Conceptual principles of watering control under irrigation

Keywords: irrigation, watering control, conceptual principles, decision support systems


The conceptual principles of watering control under irrigation using decision support systems are outlined. Based on the analysis and research of foreign and domestic authors, it has been proven that the effectiveness of watering control depends to a large extent on the methodological approaches used to determine the terms and rates of watering in various decision support systems. It is shown that the most complete potential of varieties and hybrids of various types of crops under irrigation can be realized when establishing and implementing irrigation regimes ensuring the moisture supply of the soil root layer in a narrow range of high humidity (close to field water-holding capacity (FWHC) during the entire growing season.

It was grounded that the implementation of such irrigation regimes is possible only by applying decision support systems using GIS technologies, which combine hydrogeological models for calculation and forecasting of watering terms and rates, based on the use of soil moisture potential as a criterion of moisture supply availability for plants and Earth remote sensing data (ERSD). Such a combination makes it possible to analyze and apply measurement and forecasting data to the areas not covered by ground observations and provides highly efficient ecologically safe irrigation providing high irrigation water productivity and ecological safety of irrigation.

The implementation of these principles in the practice of irrigation management ensures the yield of irrigated crops as of 0.85-0.90 of the potential of modern varieties and hybrids, while simultaneously reducing the consumption of irrigation water per unit of yield, as well as minimizing or eliminating losses of irrigation water due to infiltration, development of flooding processes, salinization, and secondary salinization of soils.


1. Krakovska, S.V., Palamarchuk, L.V., Gnatiuk, N.V., & Shpytal, T.M. (2018). Projections of air temperature and relative humidity in ukraine regions to the middle of the 21st century based on regional climate model ensembles. Heoinformatyka, 3(67), 62-77.
2. Romashchenko, M., Tarariko, Yu., Shatkovskyi, A., Saydak, R., & Soroka, Yu. (2015). Naukovi zasady rozvytku system zemlerobstva v zoni Ukrainskoho Stepu [Scientific principles of the development of farming agriculture systems in the zone of Ukrainian Steppe (in Ukrainian)]. Bulletin of Agrarian Science, 10, 5-9. [in Ukrainian].
3. Stratehiia zroshennia ta drenazhu v Ukraini na period do 2030 roku. Skhvaleno rozporiadzhenniam Kabinetu Ministriv Ukrainy vid 14.08.2019 r. № 688-r [Irrigation and drainage strategy in Ukraine until 2030. Approved by the order of the Cabinet of Ministers of Ukraine dated August 14, 2019 № 688-r], available at: [in Ukrainian].
4. Plan zakhodiv z realizatsii Stratehii zroshennia ta drenazhu v Ukraini na period do 2030 roku. Skhvaleno rozporiadzhenniam Kabinetu Ministriv Ukrainy vid 21.10.2020 r. № 1567-r [Action plan for the implementation of the Irrigation and Drainage Strategy in Ukraine until 2030. Approved by the order of the Cabinet of Ministers of Ukraine dated 21.10.2020 № 1567-r], available at: [in Ukrainian].
5. Romashchenko, M.I., Husiev, Yu.V., Shatkovskyi, A.P., Saidak, R.V., Yatsiuk, M.V., Shevchenko, A.M., & Matiash, T.V. (2020). Vplyv suchasnykh klimatychnykh zmin na vodni resursy ta silskohospodarske vyrobnytstvo [Impact of modern climate change on water resources and agricultural production]. Melioratsiia i vodne hospodarstvo, 1, 5-22. [in Ukrainian].
6. Rinaldi, M., & He, Z. (2014). Decision Support Systems to Manage Irrigation in Agriculture. Advances in Agronomy, 123, 229-279.
7. Mainaa, M.M., Amina, M.S.M., & Yazidb, M.A. (2014). Web geographic information system decision support system for irrigation water management: a review. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 64(4), 283-293.
8. Romashchenko, M., Matіash, T., Bohaienko, V., Kovalchuk, V., Voitovich, O., Krucheniuk, A., Knysh, V., & Shlikhta, V. (2019). Development experience and ways of improvement of irrigation management systems. Melioratsiia i vodne hospodarstvo, 2, 17-30.
9. de Wit, C.T. (1958). Transpiration and crop yields. Versl. Landbouwk. Onderz. 64.6 Institute of Biological Chemistry Researchon FieldCrops and Herbage, Wageningen, The Netherlands.
10. Ma, L., Ahuja, L.R., Nolan, B.T., Malone, R.W., Trout, T.J., & Qi, Z. (2012). Root Zone Water Quality Model (RZWQM2): Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1425-1446.
11. Muñoz‐Carpena, R., & Dukes, M. (2005). Automatic Irrigation Based on Soil Moisture for Vegetable Crops. University of Florida: Gainesville, FL, USA.
12. Sharma, N., Hakkim, A., & Singh, A.K. (2021). Development and field evaluation of a low-cost automated drip irrigation system. Journal of Soil and Water Conservation, 20(2), 188-194.
13. Campbell, G. S., Campbell, M. D., & Hillel, D. (1982). Irrigation scheduling using soil moisture measurements: theory and practice. Advances in irrigation, 1, 25-42.
14. Jones, H.J. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of Experimental Botany, 55(407), 2427-2436.
15. Romashchenko, M.I., Pysarenko, A.V., Pysarenko, P.V., Baliuk, S.A., Shatkovskyi A.P. etal. (2009). Rezhymy i sposoby zroshennia [Modes and methods of irrigation]. Kyiv : Ahrarna nauka, 313-350.
16. Bohaienko, V., Matiash, T., & Krucheniuk, A. (2021). Decision Support System in Sprinkler Irrigation Based on a Fractional Moisture Transport Model. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education IV. ICCSEEA 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 83. Springer, Cham.
17. Zhovtonog, O., Hoffmann, M., Polishchuk, V., & Dubel, A. (2011). New planning technique to master the future of water on local and regional level in Ukraine. Journal of Water and Climate Change, 2(2-3), 189-200.
18. Gadzalo, Ya., Romashchenko, M., Kovalchuk, V., Matiash, T., & Voitovich O. (2019). Using smart technologies in irrigation management. In International Commission on Irrigation and Drainage, 3nd World Irrigation Forum (WIF3) (pp. 1-6). Id: W.1.3.02.
19. Romashchenko, M.Y., Mystetskyi, H.E., & Kliushyn, D.A. (1991). Matematycheskaia model vnutrypochvennoho vlaho-, sole- y teploperenosa pry mykrooroshenyy [Mathematical model of intrasoil moisture, salt and heat transfer during microirrigation]. Melyoratsyia y vodnoe khoziaistvo, 7, 51-53.
20. Romashchenko, M.I., Bohaienko, V.O., Matiash, T.V., Kovalchuk, V.P., & Danylenko, Iu.Iu. (2020). Influence of evapotranspiration assessment on the accuracy of moisture transport modeling under the conditions of sprinkling irrigation in the south of Ukraine. Archives of Agronomy and Soil Science, 66(10), 1424-1435.
21. Monteith, J.L. (1965). Evaporation and environment. In: The State and Movement of Water in Living Organisms, 19th Symposium of the Society for Experimental Biology. Fogg GE. (ed). 8-12 September 1964, Swansea. The Company of Biologists: Cambridge, 205-234.
22. Shtoiko, D.A., Pysarenko, V.A., Bychko, O.S., & Yelazhenko, L.I. (1977). Rozrakhunkovi metody vyznachennia sumarnoho vyparovuvannia i strokiv polyvu s.-h. kultur [Estimated methods for determining the total evaporation and watering dates of agricultural cultures]. Zroshuvalne zemlerobstvo, 3-8. [in Ukrainian].
23. Yvanov, N. N. (1954). Ob opredelenyy velychyn yspariaemosty [On the determination of volatility values]. Moskva. [in Russian].
24. Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., & Holtslag, A.A.M., (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol., 212-213, 198-212.
25. Wang, F.X., Wu, X.X., Shock, C.C., Chu, L.Y., Gu, X.X., & Xue, X. (2011). Effects of drip irrigation regimes on potato tuber yield and quality under plastic mulch in arid Northwestern China. Field Crops Research, 122(1), 78-84.
26. Muromtsev, N.N., Romashchenko, M.Y., & Panasenko, Y.Y. (1982). Opredelenye parametrov vlahoperenosa v polevykh uslovyiakh [Determination of moisture transfer parameters in the field]. Melyoratsyia y vodnoe khoziaistvo, 56, 11-14. [in Ukrainian].
27. Romashchenko, M.I., Kolomiiets, S.S., & Bilobrova, A.S. (2019). Systema laboratornoho diahnostuvannia vodno-fizychnykh vlastyvostei gruntiv [System of laboratory diagnostics of water-physical properties of soils]. Melioratsiia i vodne hospodarstvo, 2, 199-208. [in Ukrainian].
28. Shatkovskyi, A.P., Cherevychnyi, Yu.O., & Chabanov, A.S. (2011). Zakonomirnosti formuvannia rezhymu kraplynnoho zroshennia prosapnykh kultur [Regularities of formation of the regime of drip irrigation of row crops]. Melioratsiia i vodne hospodarstvo, 99, 25-32. [in Ukrainian].
29. Romashchenko, M., Shatkovskiy, A., Zhuravlev, A., & Cherevichny, Yu. (2015). Osoblyvosti rezhymiv kraplynnoho zroshennia prosapnykh kultur [Features of regimens of drip irrigation of cultivated crops]. Visnyk agrarnoi nauky, 93(2), 51-56. [in Ukrainian].
30. Shahnazari, A., Liu, F., Andersen, M.N., Jacobsen, S.E., & Jensen, C.R. (2007). Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions. Field Crops Research, 100(1), 117-124.
31. Shatkovskyi, A.P., & Cherevychnyi, Yu. O. (2013). Vodospozhyvannia ta vrozhainist paslonovykh kultur za kraplynnoho zroshennia v umovakh Stepu Ukrainy [Water consumption and yield of nightshade crops under drip irrigation in the steppe of Ukraine]. Melioratsiia i vodne hospodarstvo, 100(1), 27-33. [in Ukrainian].
32. Romashchenko M.Y. (1992). Nekotorye aspekty obosnovanyia umenshenyia orosytelnykh norm [Some Aspects of the Justification for Reducing Irrigation Norms]. Visnyk ahrarnoi nauky, 35-39. [in Ukrainian].
33. Romashchenko, M.I., Baliuk, S.A., & Zhovtonoh O.I. (1998). Naukovo-metodychni osnovy ta systema gruntovo-ekolohichnoho zabezpechennia rezhymiv zroshennia [Scientific and methodological bases and system of soil and ecological support of irrigation regimes]. Ahrokhimiia i gruntoznavstvo. Spets.vypusk chast, 1, 38-43. [in Ukrainian].
34. Romashchenko, M.I., Zhovtonoh, O.I., & Filipenko, L.A. (1999). Obgruntuvannia ekolohichno bezpechnykh polyvnykh norm [Substantiation of ecologically safe irrigation norms]. Ahrarna nauka, 11, 56-61. [in Ukrainian].
35. Overgaard, J., Rosbjerg, D., |& Butts, M.B. (2006). Land-surface modelling in hydrological perspective – a review. Biogeosciences, 3(2), 229-241.
36. Shuttleworth, W.J., & Wallace, J.S. (1985). Evaporation from sparse crops - an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 111, 839-855.
37. Priestley, C.H.B., & Taylor, R.J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81-92.
38. Alpatev, A.M. (1974). O metodakh rascheta potrebnostei v vode kulturnykh fytotsenozov v sviazy s razvytyem oroshenyia v SSSR [On methods for calculating the water needs of cultural phytocenoses in connection with the development of irrigation in the USSR]. Byolohycheskye osnovy oroshaemoho zemledelyia, 85-89. [in Russian].
39. Budyko, M.I. (1974). Climate and Life; Academic Press: New York, NY, USA.
40. Faybishenko, B. (2007). Climatic Forecasting of Net Infiltration at Yucca Mountain Using Analogue Meteorological Data. Vadose Zone Journal, 6, 77-92.
41. Faybishenko, B. (2010). Fuzzy-probabilistic calculations of water-balance uncertainty. Stochastic Environmental Research and Risk Assessment, 24(6), 939-952.
42. Allen, R.G., Pereira, L.S., Smith, M., Raes, D., & Wright, J.L. (2005). FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain. Eng. ASCE, 131 (1), 2-13.
43. Romashchenko, M.I., Shatkovskyi, A.P., & Zhuravlov, O.V. (2016). Osoblyvosti zastosuvannia metodu “Penman-Monteith” v umovakh kraplynnoho zroshennia Stepu Ukrainy (na prykladi zernovoi kukurudzy) [Peculiarities of application of the “Penman-Monteith” method in the conditions of drip irrigation of the Steppe of Ukraine (on the example of grain corn)]. Visnyk ahrarnoi nauky, 5, 55-59. [in Ukrainian].
44. Richards, L.A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1(5), 318-333.
45. Pachepsky, Y., Benson, D., & Rawls, W. (2000). Simulating Scale-Dependent Solute Transport in Soils with the Fractional Advective-Dispersive Equation. Soil Sci. Soc. Am. J., 64, 1234-1243.
46. Kavvas, M.L., Tu, T., Ercan, A., & Polsinelli, J. (2017). Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time. Earth Syst. Dynam., 8, 921-929.
47. Kavvas, M.L., Ercan, A., & Polsinelli, J. (2017). Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time. Hydrol. Earth Syst. Sci., 21, 1547-1557.
48. Romashchenko, M.I., Bohaienko, V.O., Matiash, T.V., Kovalchuk, V.P., & Krucheniuk, A.V. (2021). Numerical simulation of irrigation scheduling using fractional Richards equation. Irrigation Science, 39(3), 385-396.
49. Romashchenko, M.Y. (1981). Yssledovanye vlahoperenosa s tseliu rehulyrovanyia rezhyma kapelnoho oroshenyia sadov [Investigation of moisture transfer in order to regulate the regime of drip irrigation of orchards]. Avtoreferat kandydatskoi dyssertatsyy, Kyev, 25 s. [in Ukrainian].
50. Romashchenko, M.I., Koriunenko, V.V., Muromtsev, M.M., Shatkovskyi, A.P., Riabkov, S.V., Usatyi, S.V., Usata, L.H., Zhuravlov, O.V., Matiash, T.V., & Cherevychnyi, Yu.O. (2020). Rekomendatsii z operatyvnoho kontroliu ta upravlinnia rezhymom zroshennia silskohospodarskykh kultur iz zastosuvanniam tenziometrychnoho metodu [Recommendations for operational control and management of irrigation regime of agricultural crops using tensiometric method]. Naukovo-praktychne vydannia: IVPiM NAAN. Kyiv .
51. Kovalchuk, V., Demchuk, O., Demchuk, D., & Voitovich, O. (2018). Data mining for a model of irrigation control using weather web-services. In International Conference on Computer Science, Engineering and Education Applications (pp. 133-143). Springer, Cham.
52. Droogers, P., & Bastiaanssen, W. (2002). Irrigation performance using hydrological and remote sensing modeling. J. Irrig. Drain. Eng., 128 (1), 11-18.
53. Kite, G.W., & Droogers, P. (2000). Comparing evapotranspiration estimates from satellites, hydrological models and field data. J. Hydrol., 229 (1-2), 3-18.
54. Kite, G.W. (2000). Using a basin-scale hydrological model to estimate crop transpiration and soil evaporation. J. Hydrol., 229 (1-2), 59-69.
55. Santos, C., Lorite, I.J., Tasumi, M., Allen, R.G., & Fereres, E. (2008). Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level. Irrig. Sci., 26 (3), 277-288.
56. Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., & Tuller, M. (2019). Ground, proximal, and satellite remote sensing of soil moisture. Reviews of Geophysics, 57, 530-616.
57. Danylenko, Iu., & Bohaienko, V. (2020). Monitoring of soil moisture in the south of Ukraine using active and passive remote sensing data. Remote Sensing for Agriculture, Ecosystems, and Hydrology XXII, 11528, 1152807.
58. Virnodkar, S.S., Pachghare, V.K., Patil, V.C. et al. (2020). Remote sensing and machine learning for crop water stress determination in various crops: a critical review. Precision Agric., 21, 1121-1155.
59. Williams, J.R., & Izaurralde, R.C. (2005). The APEX model. BRC Report 2005-02. Blackland Research and Extension Center, Blackland
60. Borah, D.K., Yagow, G., Saleh, A., Barnes, P.L., Rosenthal, W., Krug, E.C., & Haucket, L.M. (2006). Sediment and nutrient modeling for TMDL development and implementation. Trans. ASABE, 49 (4), 967-986.
61. Panagopoulos, Y., Makropoulos, C., & Mimikou, M. (2012). Decision support for diffuse pollution management. Environ. Model Softw., 30, 57-70.
62. Styczen, M., Poulsen, R.N., Falk, A.K., & Jørgensen, G.H. (2010). Management model for decision support when applying low quality water in irrigation. Agric. Water Manage., 98, 472-781.
How to Cite
Romashchenko, M., Bogaenko, V., Shatkovskyi, A., Matyash, T., Kolomiets, S., Shevchuk, S., Danylenko, Y., & Sardak, A. (2022). Conceptual principles of watering control under irrigation. Land Reclamation and Water Management, (1), 5 - 17.