APPROACHES TO ASSESSING THE STABILITY OF BANK PROTECTION STRUCTURES OF WATERBODIES: ANALYSIS OF CONSTRUCTIONS AND MODELS FOR THEIR CALCULATION
Abstract
The article analyzes the theoretical foundations for determining the stress state in a soil mass and the design of fastening the bank slope of reservoirs. Scientific research and theoretical principles on determining the forces that act on a bank protection structure have been systematized. Methodological approaches to the static calculation of bank protection for indirectly vertical structures are proposed, taking into account the relationship between the load on the structure and its deformation.
The purpose of the research is to ensure the stability and reliability of bank protection structures and to substantiate directions for improving technical solutions in modern conditions.
The work analyzes the use of various types of slope fastenings for bank protection structures in accordance with the requirements of State construction standards. It is proposed to focus research on sheet piling shore fastenings, as a modern and progressive technology for bank protection. The "soil massif - fastening structure" system is considered as a calculation model in the form of a one-sided type, which is an elastic element, which makes it possible to apply the modern apparatus of the theory of elasticity in considering this problem. This makes it possible to accept a linear relationship between stress and strain and obtain sufficient accuracy, which is confirmed by the available results of domestic and foreign research. For calculations of deformations, and assessment of the strength and stability of soil massifs and foundations, it is proposed to pay direct attention to the characteristics of the mechanical properties of soils, while three stages of foundation deformation are considered.
The formulated differential equations of the equilibrium of the soil massif make it possible to solve a wide range of issues related to the limit equilibrium and to obtain the calculated parameters of the pressure of earth masses on the retaining walls of shore fortifications of the oblique-vertical type. The results of the research analysis are recommended for use in determining the main loads on hydraulic structures, substantiating technical solutions for the development and improvement of slope and slope-vertical types of bank protection of reservoirs.
References
2. Snytko, N. K. (1963). Static and dynamic soil pressure and calculation of retaining walls [Statycheskoe y dynamycheskoe davlenye hruntov y raschet podpornykh stenok]. Lenynhrad-Moskva : Hosstroiyzdat. [in russian].
3. Klein, H.K. (1996). Ground pressure on a structure depends on its movements [Davlenye hrunta na sooruzhenye v zavysymosty ot ykh peremeshchenyi]. №1, 1996. [in russian].
4. Beliar, Y.Ia., & Borodianskyi, M.Ia. (1970). Calculation of retaining walls of any stiffness [Raschet podpornykh stenok liuboi zhestkosty]. Yzv. Vuzov «Stroytelstvo y arkhytektura», 8. [in russian].
5. Lazebnyk, H.E., & Chernysheva, E.Y. (1966). On the influence of the shape of lateral soil pressure diagrams on the forces in sheet pile anchor retaining walls [O vlyianyy formy epiur bokovoho davlenyia hrunta na usylyia v shpuntovykh ankernykh podpornykh stenkakh]. Hydrotekhnycheskoe stroytelstvo, № 5, [in russian].
6. Byleush, A.Y. (1984). Theoretical basis for the calculation of retaining structures and the effectiveness of their operation when securing landslide slopes [Teoretycheskye osnovy rascheta uderzhyvaiushchykh sooruzhenyi y effektyvnost ykh raboty pry zakreplenyy opolznevykh sklonov: Avtoref. dys. d-ra tekhn. nauk.], L: VNYYH ym.B.E.Vedeneeva. [in russian].
7. Ryzhov, A.M. (1992). Introduction to nonlinear mechanics and physical modeling of foundations [Vvedenye v nelyneinuiu mekhanyku y fyzycheskoe modelyrovanye osnovanyi]. Zaporozhe: Vydavets. [in russian]
8. Kaliukh, Yu.Y., & Vovk, O.A. (1978). Theoretical concept and practical implementation of monitoring of building structures of Unit IV of the Chernobyl Nuclear Power Plant [Teoretycheskaia kontseptsyia praktycheskaia realyzatsyia monytorynha stroytelnykh konstruktsyi IV bloka Chernobylskoi atomnoi stantsyy]. III Szkola geomehaniki Glivice – ustron Poland, 81-86. [in russian].
9. Kaliukh, Yu.Y. (1999). Application of modern information technologies, mathematical methods and sensitive elements for studying and predicting the evolution of process-hazardous territories and objects [Prymenenye sovremennykh ynformatsyonnykh tekhnolohyi, matematycheskykh metodov y chuvstvytelnykh elementov yzuchenyia y prohnozyrovanyia evoliutsyy protsessoopasnykh terrytoryi y obektov. Nauchnometodycheskoe posobye]. Kyev: Znanye Ukrayna. [in russian].
10. Kuzlo, M. T. (2019). Experimental and theoretical studies of deformations of soil massifs under the influence of man-made factors: monograph. [Eksperymentalni ta teoretychni doslidzhennia deformatsii gruntovykh masyviv pry dii tekhnohennykh faktoriv : monohrafiia]. Rivne: Nats. un-t vod. hosp-va ta pryrodokorystuvannia, 181 p. [in Ukrainian].
11. Panasiuk, I.V., Tomiltseva, A.I., Zub, L.M., Maltsev, V.I., Dolynskyi, V.L., Dubniak, S. S., Dubniak, S. A., Struzhko, A.O., & Zbitniev, A.A. (2012). Efficiency and ecological role of shore fortification structures on the Dnieper reservoirs. [Efektyvnist ta ekolohichna rol berehoukripliuvalnykh sporud na dniprovskykh vodoskhovyshchakh]. Kyiv: KNUTD, 120 p. Retrieved from: https://www.researchgate.net/profile/Lesya-Zub2/publication /299468906_Efektivnist_ta_ekologicna_rol_beregoukripluvalnihsporud_nadniprovskih_vodoshovisah/links/56fa4ab808ae7c1fda319e91/Efektivnist-taekologicna-rol-beregoukripluvalnih-sporud-na-dniprovskih-vodoshovisah.pdf [in Ukrainian].
12. Khoziaikina, N. V., & Smyrnova, M. S. (2018). Analysis of methods for assessing the stability of slopes and slopes, which are used as the foundations of buildings and structures [Analiz metodiv otsinky stiikosti skhyliv i ukosiv, yaki vykorystovuiutsia v yakosti osnov budivel ta sporud Materialy konferentsii «Perspektyvy rozvytku budivelnykh tekhnolohii»], Dnipro: NTU «Dniprovska politekhnika». Retrieved from: https://ir.nmu.org.ua/handle/123456789/152332 [in Ukrainian].
13. DBN V.2.4-3:2010 Hydrotechnical, energy and reclamation systems and structures, underground mining. Waterworks. Substantive provisions [Hidrotekhnichni, enerhetychni ta melioratyvni systemy i sporudy, pidzemni hirnychi vyrobky. Hidrotekhnichni sporudy. Osnovni polozhennia]. [in Ukrainian].
14. Syplyvets, O. O. (2020). Mathematical modeling of joint work of supporting structures and soil massif in conditions of dense urban development [Matematychne modeliuvannia spilnoi roboty pidpirnykh sporud i hruntovoho masyvu v umovakh shchilnoi miskoi zabudovy: Dysertatsiia na zdobuttia naukovoho stupenia kand. tekhn. nauk: 05.23.01.] Odesa: Odes. nats. mor. un-t. Retrieved from: https://onmu.org.ua/ua/spetsializovana-vchenarada-d-41-060-01/dissertation-repository.html. [in Ukrainian].
15. Buhrov, A.K., Narbut, P.M., & Spydyn, V.P. (1987). Study of soils under triaxial compression conditions [Yssledovanye hruntov vuslovyiakh trekhosnoho szhatyia]. Leningrad: Stroyizdat. [in russian].