Сurrent condition of pine plantations of Kyiv Polisya under the influence of environmental factors

Keywords: climate change, phyto-pests, phyto-diseases, CO2 emissions, solar activity, hydrothermal coefficient, correlation, mathematical modeling

Abstract

The article describes the climate change in the study region for the period 1968-2020. It was specified that over the past fifty-nine years there has been an increase in average annual air temperature by 2,5°C, a decrease in relative humidity by 6,0% and average annual rainfall by 5 mm. According to the analysis, it was determined that during the period 2009-2020 significant damage to pine plantations of Kyiv Polissya is caused by the pests like common pine sawfly (Diprion pini L.), pine bark beetle (Aradus cinnamomeus Panz), pine silkworm (Dendrolimus pini L.), pine weevil (Leucaspis pusilla Loew), and pine star weaver (Acantholyda nemoralis Matsumura). Heterobasidion annosum (Fr.) Bref. has also caused a significant damage to pine forests over the past eleven years; the damaged area is of ​​12,8-15,9 thousand hectares.

According to the hydrothermal analysis of the study area, it was determined that 2009 and 2015 were characterized as years of medium drought; 2010, 2016, 2017, 2020 were the years of low drought; 2011–2014, 2018, 2019 were the years of sufficient moisture supply. The analysis of the number W influence found that in the years of increased solar activity the number of phytopests increases, while in the years of minimal solar activity it decreases. Based on the statistical indicators, the analysis of CO2 emissions into the environment for the period 2009-2020 and it was found that since 2012 the amount of carbon dioxide emissions has decreased from 10,2 million tons to 3.7 million tons. Correlation analysis of all indicators showed the interaction between the area of ​​damaged trees by insect pests and the Wolf number, CO2 emissions into the environment, average annual precipitation amounts and hydrothermal moisture coefficient of Selyaninov G.T. There is also a correlation between the area of ​​damaged plantations by pine fungus and the average annual air temperature, relative humidity and CO2 emissions.

Author Biographies

V. V. Moroz, Polissya National University, Zhytomyr, Ukraine

Ph. D. in agriculture

Yu. A. Nykytyuk, Polissya National University, Zhytomyr, Ukraine

Ph. D. in agriculture

References

1. Akatov, P.V. (2013). Reaktsiya rasteniy na rost kontsentratsii uglekislogo gaza v atmosfere [Response of plants to rising of atmospheric carbon dioxide]. Living and Bioinert Systems, 5. Retrieved from http://www.jbks.ru/archive/issue-5/article-14. [in Russian]
2. Vozhegova, R.A. (2012). Adaptatsiya zemlerobstva stepovoyi zony do umov pidvyshchennya posushlyvosti klimatu [Adaptation of agriculture of the steppe zone to the conditions of increasing aridity of the climate]. Retrieved from: http://unt.org.ua/adaptats-ya-zemlerobstva-stepovo-zonido-umov-p-dvishchennya-posushlivost-kl-matu. [in Ukrainian]
3. Didukh, Ya.P. (2009). Ekolohichni aspekty hlobalʹnykh zmin klimatu: prychyny, naslidky, diyi. [Ecological aspects of the global climate changes: Reasons, consequences and actions]. Bulletin of the National Academy of Sciences of Ukraine, 2, 34-44. [in Ukrainian]
4. Zherebtsov, G.A., Kovalenko, V.A., Molodykh, S.I., & Kirichenko, K.E. (2013). Vliyaniye solnechnoy aktivnosti na temperaturu troposfery i poverkhnosti okeana. [Influence of solar activity on temperature of the troposphere and ocean surface]. Bulletin of the Irkutsk State Agrarian University. Series “Earth Sciences”, 6(1), 61-79. [in Russian]
5. Kozak, G.P. (2006). Vplyv ekolohichnykh chynnykiv na stan populyatsiy komakh-fitofahiv ozymoyi pshenytsi v Lisostepu Ukrayiny [Influence of ecological factors on the state of winter wheat phytophagous populations in the Forest-Steppe of Ukraine] (Candidate’s thesis. National Academy of Agrarian Sciences of Ukraine, Kyiv. [in Ukrainian]
6. Lavniy, V.V., & Mazepa, V.H. (2012). Vplyv sonyachnoyi aktyvnosti na vitrovaly i burelomy lisu v Ukrayinsʹkykh Karpatakh. [Influence of solar activity on forest windthrows and windfalls in the Ukrainian Carpathians]. Scientific Bulletin of UNFU, 23.3, 97-103. [in Ukrainian]
7. Martynyuk, V.S., Temuryants, N.A., & Vladimirsky, B.M. (2008). U prirody net plokhoy pogody: kosmicheskaya pogoda v nashey zhizni. [Nature does not have bad weather: Space weather in our life]. Kyiv: Publisher V.S. Martynyuk. [in Russian]
8. Melnyk, P.P. (2016). Ekoloho-ekonomichni osnovy upravlinnya pryrodokorystuvannyam v ahroekosystemakh. [Ecological and economic bases of environmental management in agroecosystems]. Kyiv: DAI. [in Ukrainian]
9. Moroz, V.V., & Vorobyova, O.V. (2020). Vplyv aktyvnosti sontsya na vynyknennya oseredkiv entomoshkidnykiv u Zhytomyrsʹkomu Polissi. [The effects of solar activity on the occurrence of insect persts sites in Zhytomyr Polissya]. Norwegian Journal of Development of the International Science, 2(51), 18-21. [in Ukrainian]
10. Moroz, V.V., & Nikityuk, Yu.A. (2020). Vplyv sonyachnoyi aktyvnosti, volohozabezpechennya ta dioksydu vuhletsyu na zahybelʹ lisovykh nasadzhenʹ [The effects of solar activity, moisture supply, and carbon dioxide on Ukrainian forest plantation death]. Danish Scientific Journal, 2(34), 8-14. [in Ukrainian]
11. Semenova, I.G. (2014). Otsenka zasushlivykh usloviy na Ukraine v kontse HH – v nachale HHІ stoletiya. [An assessment of drought conditions in Ukraine in the end of the 20th the beginning of the 21st centuries]. Bulletin of the Immanuel Kant Baltic Federal University, 1, 20-29. [in Russian]
12. Simonenkova, V.A. (2011). Analiz vozniknoveniya i razvitiya vspyshek massovogo razmnozheniya osnovnykh listogryzushchikh vrediteley [Analysis of the occurrence and development of outbreaks of mass reproduction of the main leaf-eating pests]. Bulletin of the Orenburg State Agrarian University, 2(30), 242-244. [in Russian]
13. Simonenkova, V.A. (2011). Mnogomernyy regressionnyy analiz svyazi ploshchadi ochagov nasekomykh vrediteley s ekologo-klimaticheskimi faktorami. [Multivariate regression analysis of the relationship between the area of foci of insect pests and ecological and climatic factors]. Bulletin of the Orenburg State Agrarian University, 3(31), 292-295. [in Russian]
14. Simonenkova, V.A. (2011). Obosnovaniye regressionnoy modeli dlya otsenki ploshchadi ochagov nasekomykh-vrediteley. [Substantiation of the regression model for assessing the area of foci of insect pests]. Bulletin of the Orenburg State Agrarian University, 4(32), 276-280. [in Russian]
15. Tarariko, O.H., Ilienko, T.V., & Kuchma, T.L. (2016). Vplyv zmin klimatu na produktyvnistʹ ta valovi zbory zernovykh kulʹtur: analiz ta prohnoz [The impact of climate hange on productivity and gross harvest of grain crops: Analysis and forecast]. Ukrainian Geographical Journal, 1, 14-22. [in Ukrainian]
16. Ustskiy, I.M., Mikhailichenko, O.A., & Dyshko, V.A. (2020). Spadkovi oznaky stiykosti korenevoyi hubky siyantsiv sosny, vyroshchenykh iz nasinnya derev v oseredkakh usykhannya [Hereditary characters resistance to heterobasidion annosum resistance of pine seedlings grown from tree seeds in the disease foci]. Ukrainian Journal of Forest and Wood Science, 11(1), 78-86. doi: 10.31548/forest2020.01.078
17. Faraone, P. (1995). Yezhednevnyye nablyudeniya (1970–1992 gg.) fluktuatsiy chastoty poyavleniya sektornoy struktury v koloniyakh bakteriy, otobrannykh iz okruzhayushchego vozdukha i iz kul'tur S. aureus [Daily observations (1970-1992) of fluctuations in frequency of occurrence of a sector structure in bacterial colonies selected from open air and from S. aureus cultures]. Biofizika, 40(4), 786-792. [in Russian]
18. Chernyshev, V.B. (1989). Solnechnaya aktivnost' i nasekomyye. [Solar activity and insects]. In Space biology problems (pp. 215-224). Leningrad: Nauka. [in Russian]
19. Chizhevsky, A.L. (1976). Zemnoye ekho solnechnykh bur' [Earth echo of solar storms]. Moscow: Mysl. [in Russian]
20. Shunkina, E.A. (2015). Otsenka vliyaniya klimaticheskikh izmeneniy na vozniknoveniya i rasprostraneniye lesnykh pozharov na Severo-Zapade Rossii [Estimation the impact of climatic change on the emergence and spread of forest fires in the North-West of Russia]. Forestry Information, 4, 39-45. [in Russian]
21. Yavorskiy, P.P. (2015). Vplyv zmin klimatu na lisovi ekosystemy. Lisove i sadovo-parkove hospodarstvo [Impact of climate change on forest ecosystems]. Forestry and Landscape Gardening, 6. [in Ukrainian]
22. Bentz, B.J., Régnière, J., Fettig, Ch.J., Hansen, E.M., Hayes, J.L., Hicke, J.A., Kelsey, R.G., Negrón, J.F., & Seybold, S.J. (2010). Climate change and bark beetles of the Western United States and Canada: Direct and indirect effect. BioScience, 60(8), 602-613. doi: 10.1525/bio.2010.60.8.6. [in English]
23. Clilverd, M.A., Clarke, E., Ulich, T., Rishbeth, H., & Jarvis, M.J. (2006). Predicting solar cycle 24 and beyond. Space weather, 4, S09005. doi: 10.1029/2005SW000207. [in English]
24. Dorotovič, I., Louzada, J., Rodrigues, J., & Karlovský, V. (2014). Impact of solar on the growth of pine trees: a case study. European Journal of Forest Research, 133, 639-648. doi: 10/1007/s10342-014-0792-8. [in English]
25. Fangmeier, A. (2012). Effects of elevated atmospheric CO2 concentrations on insects and pathogens of spring wheat (Triticum aestivum L. cv. Triso) and oilseed rape (Brassica napus cv. Campino). (Doctoral dissertation, University of Hohenheim, Poltawa, Ukraine). [in English]
26. Getmanchuk, A., Kychylyuk, O., Voytyuk, V., & Borodavka, V. (2017). The regional changes of climate as primary causes of strong withering of pine stands in Volyn Polissya. Scientific Bulletin of UNFU, 27(1), 120-124. doi: 10.15421/40270127. [in English]
27. Guerenstein, P.G., & Hildebrand, J.G. (2008). Roles and effects of environmental carbon dioxide in insect life. Annual Review of Entomology, 53, 161-78. doi: 10.1146/annurev.ento.53.103106.093402. [in English]
28. Hrunyk, N.I., Yusypovych, Yu.M., Kovaleva, V.A., & Gout, R.T. (2015). Heterobasidion annosum root rot infection development in scots pine and evaluation of the expression levels of lipid transfer protein and defensins in infected tissues. Scientific Bulletin of UNFU, 25(8), 25-32. doi: 10.15421/40250803. [in English]
29. Jactel, H., Petit, J., Desprez-Loustau, M.-L., Delzon, S., Piou, D., Battisti, A., & Koricheva, J. (2012). Drought effect on damage by forest insects and pathogens: A meta-analysis. Global Change Biology, 18(1), 267-276. [in English]
30. Levchenko, V., Martenuk, G., Pasichnyk, I., & Maksymova, T. (2020). Pathological process of root sponge of pine in the conditions of forest edatops and climate change state enterprise “Zarichanske forestry”. Paradigm of Knowledge, 5(43). doi: 10.26886/2520-7474.5(43)2020.2. [in English]
31. Levchenko, V.B., Shulga, I.V., & Zalewski, R.A. (2017). Entomologizes factory in the process of spreading common pine root sponge under the conditions of ship timber forestry of state enterprise “Zhytomyr Forestry”. Innovative Solutions in Modern Science, 1(20). doi: 10.26886/2414-634x.1(20)2018.2. [in English]
32. Li, K.-J., Gao, P.-X., & Su, T.-W. (2005). Estimating the size and timing of the maximum amplitude of solar cycle 24. Chinese Journal of Astronomy and Astrophysics, 5, 539-545. doi: 10.1088/1009-9271/5/5/011. [in English]
33. Radovanović, M.M., Pavlović, T.M., Stanojević, G.B., Milanović, M.M., Pavlović, M.A., & Radivojević, A.R. (2015). The influence of solar activities on occurrence of the forest fires in South Europe. Thermal Science, 19(2), 435-446. doi: 10.2298/TSCI130930036R. [in English]
34. Muller, J., Bubler H., Gobner, M., Rettelbach, T., & Duelli, P. (2008). The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodiversity and Conservation, 17(12), 2979-3001. doi: 10.1007/s10531-008-9409-1. [in English]
35. Ozair, M., Hussain, T., Aslam, A., Anees, R., Tanveer, M., & Gomez-Aguilar, J.F. (2021). Management of pine forests by assessment of insect pests and nematodes. European Physical Journal Plus, 107, 2411-2502 [in English]
36. Pesnell, W.D. (2008). Predictions of solar cycle 24. Solar Phys, 252, 209-220. doi: 10.1007 / s11207-008-9252-2. [in English]
37. Radovanovič, M.M., Pavlovič, T.M., Stanojevič, G.B., Milanovič, M.M., Pavlovič, M.A., & Radivojevič, A.R. (2015). The influence of solar activities on occurrence of the forest fires in South Europe. Thermal Science, 19(2), 435-446. [in English]
38. Srinivasa Rao, M., Manimanjari, D., Vanaja, M., Rama Rao, C.A., Srinivas, K., Rao, V., & Venkateswarlu, B. (2012). Impact of elevated CO2 on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. Journal of Insect Science, 12, article number 103. [in English]
39. Wermelinger, B. (2004). Ecology and management of the spruce bark beetle Ips typographus – review of recent research. Forest Ecology and Management, 202, 67-82. doi: 10.1016/j.foreco.2004.07.018. [in English]
Published
2021-12-23
How to Cite
Moroz, V., & Nykytyuk, Y. (2021). Сurrent condition of pine plantations of Kyiv Polisya under the influence of environmental factors. Land Reclamation and Water Management, (2), 139 - 149. https://doi.org/10.31073/mivg202102-302