IMPROVING THE OPERATIONAL RELIABILITY OF HYDRAULIC FACILITIES WHEN USING POLYMER AND POLYMER-CEMENT COMPOSITES

Keywords: water management and land reclamation complex, hydraulic facilities, operational reliability, durability, repair and restoration work, waterproofing, antifiltration protection, composite materials

Abstract

Actualuty of the problem. The effective functioning of water-reclamation systems depends to a large extent on the operational reliability and durability of hydraulic structures. The structural elements of hydraulic structures of water management and reclamation complex from the moment of commissioning are subject to aggressive environmental influences. Aggressive factors (hydrostatic water pressure, alternating freezing and thawing, wetting and drying, corrosive action of salts dissolved in water, dynamic action of ice, etc.) constantly affect concrete structures, gradually destroying them. Therefore, the development of measures aimed at ensuring high resistance of structures to the aggressive environmental factors is relevant.

Effective operation of structures with long-term aggressive environmental factors is only possible if they are protected (reinforced) with effective insulating, anticorrosive, high-strength, wear-resistant and cavitation-resistant composite materials. Specific characteristics of polymer and polymer-cement composite materials (high strength, corrosion resistance, frost resistance, adhesion to different coatings) enable to create effective technologies for restoring the functional capacity of hydraulic structures and increasing their stability. The need of reinforcing concrete structures of hydraulic facilities by combining or partially replacing them with modern composite materials and structures made of polymers and polymer cement is determined in view of increasing coolness, reliability and durability of the structures. These materials should be standardized at the stage of design, construction, repair and reconstruction of structures that will ensure their operational reliability and durability in aggressive environment.

The development and implementation of technical solutions increasing the operational reliability and durability of hydraulic facilities for water-reclamation purposes while reducing their material and metal intensity are ones of the main areas of scientific research in the field of construction, repair and reconstruction of water-reclamation systems. Achieving high technical and economic performance of hydraulic facilities, taking into account the significant effect of aggressive environmental factors on them is possible using a scientifically sound combination of concrete and reinforced concrete structures with polymer and polymer cement composite materials. The highest level of reliability will be ensured by the structures providing the protection against damage, corrosion and filtration using the latest high performance composite materials. Optimization of technical solutions to increase the operational reliability and durability of hydraulic facilities is only possible provided that modern composite materials properties are comprehensively studied, their compliance with the requirements of water and reclamation construction, taking into account extreme operating conditions, is determined and new efficient technologies for future performance of the facilities are created. Along with expanding the use of polyme and polymer-cement composite materials, finding new varieties of polymer additives and obtaining reliable data on the durability of these materials in different operating conditions will be extended. Results. The Institute of Water Problems and Land Reclamation of NAAS has developed the main technological areas of polymer and polymer-cement composite materials application for increasing the operational reliability of hydraulic structures of water management and reclamation complex: polymeric film screens and geomembranes for increasing the anti-filtration properties; polymer and bitumen-polymer sealants for the arrangement and restoration of deformation joints; polymer and polymer-cement mixtures for structural repairs, restoration of bearing capacity, waterproofing protection, protection against filtration, accidental damage, corrosion, cavitation and actuation of hydraulic structures; concrete polymers, polymer concrete and polymer cement with high physical and mechanical properties for construction, repair and reconstruction of hydraulic structures.

Author Biography

O. V. Kovalenko, Institute of Water Problems and Land Reclamation NAAS, Kyiv

Ph. D. in technical sciences

References

1. Myrtskhulava, T. E. (1974). Nadezhnost hydromelyoratyvnukh sooruzhenyi [Reliability of irrigation and drainage facilities]. Moskva: Kolos.[in Russian].
2. Reznyk, V.B. (1987). Novue materyalu y konstruktsyy na osnove polymerov v vodokhoziaistvennom ystroytelstve [New materials and designs on the basis of polymers in water management and construction]. Kyev: Budivelnyk. [in Russian].
3. Elshyn, Y.M. (1974). Polymernue materyalu v yrryhatsyonnom stroytelstve. [Polymer materials in irrigation construction]. Moskva: Kolos. [in Russian].
4. Reznyk, V.B. (1985). Povushenye dolhovechnosty y ekspluatatsyonnoi nadezhnosty hydrosooruzhenyi za schet prymenenyia polymernukh materyalov [Increased durability and operational reliability of hydraulic structures through the use of polymeric materials]. (Ser.5, Vol. 2.) Moskva: Obzor. Ynform. [in Russian].
5. Elshyn, Y.M., & Hvenetadze, A.R. (1968). Betono-plenochnye kompozytsyy dlia oblytsovky kanalov [Concrete film compositions for channel lining]. Hydrotekhnyka y melyoratsyia, 9, 71-73. [in Ukrainian].
6. Sukhorukov, P.A., Voroshnov, S.N., & Shevchuk Ya.V. (1983). Effektyvnost sovremennukh protyvofyltratsyonnukh konstruktsyi oblytsovok orosytelnukh kanalov s prymenenyem polymernukh materyalov [Efficiency of modern antifiltration constructions of lining of irrigation canals using polymeric materials]. Tekhnolohyia y mekhanyzatsyia hydroyzoliatsyonnukh rabot, promyshlennukh hrazhdanskykh y enerhetycheskykh sooruzhenyi. Lenynhrad: Enerhoyzdat, 102-103. [in Russian].
7. Hvenetadze, A.R., Reznyk, V.B., & Levchenko, A.Y. (1979). Ratsyonalnue konmstruktsyy protyvofyltratsyonnukh oblytsovok dlia puchynystukh y prosadochnukh osnovanyi [Rational designs of impervious linings for heaving and subsiding bases]. Voprosy stroytelstva y ekspluatatsyy melyoratyvnykh system. Kyev, UkrNYYHyM, 24-28. [in Russian].
8. Martyniuk, H.F., Muzyka, O.P., Boiko, H.Ia., & Savochenko, V.V. (2016). Tekhnolohiia vidnovlennia protyfiltratsiinykh vlastyvostei kanaliv iz vykorystanniam heosyntetychnykh materialiv [Technologiya vіdnovlennya protifіltratsіynih power of the channels from vikristannyam geosynthetic materials]. Ahrarna nauka vyrobnytstvu, 4, 26. [in Ukrainian].
9. Chumakov, E.V., Reznyk, V.B, & Hryzan, Yu.M. (1985). Vlyianye osobukh ekspluatatsyonno-tekhnolohycheskykh faktorov na svoistva tyokolovoho hermetyka [Influence of special operational and technological factors on the properties of thiokol sealant]. Yzv. Vuzov. Str-vo y arkhytektura, 2, 79-82. [In Ukrainian].
10. Kovalenko, O.V., & Bruzgina, N.D. Polimerna hermetyzuiucha kompozytsiia [Polymer sealing composition]. Ratent of Ukraine № 38113. [In Ukrainian].
11. Kovalenko, O.V., & Bruzgina, N.D. Deformatsiinyi shov [Strain seam]. Ratent of Ukraine № 46976. [In Ukrainian].
12. Vashchuk, V.Ia., Levchenko, A.Y., & Doliuk, V.P. (1979). Svoistva betonopolymerov y perspektyvu ykh prymenenyia v hydromelyoratyvnom stroytelstve [Properties of concrete copolymers and prospects for their use in hydro-meliorative construction]. Melyoratsyia y vodnoe khoziaistvo. 75. 53-56. [in Russian].
13. Vashchuk, V.I., Levchenko, A.Y., & Doliuk, V.P. (1976). Yssledovanyia tekhnolohyy betonopolymerov dlia napornukh trub y zashchytnukh oblytsovok hydrotekhnycheskykh sooruzhenyi [Research of technology of concrete copolymers for pressure pipes and protective facings of hydraulic structures]. Perspektyvy prymenenyia betonopolymerov y polymerbetonov v stroytelstve, 95-96. [in Russian].
14. Kovalenko, O.V., Levchenko, A.I., Stetsenko, V.P., & Braha, F.V. (1986). Betonopolymernue svarnue fyltru dlia vusokomyneralyzovannukh vod [Concrete welded filters for highly mineralized waters]. Hydrotekhnyka y melyoratsyia,10, 72-73. [In Ukrainian].
15. Elshyn, Y.M. (1980) Polymerbetonu v hydrotekhnycheskom stroytelstve [Polymer concrete in hydraulic engineering]. Moskva: Stroiyzdat. [in Russian].
16. Reznik, V., Kisilenko, M., Kovalenko, A., Sharshunov, A., & Strokon, D. (1992). Efficient repair polymer compositins and technologiesir of their use. International Congress on polymers in concrete. Moscow, 572-578. [in Russian].
17. Zgholych, L.M., & Karaev, V.T. (1986). Prymenenye polyfunktsyonalnukh modyfykatorov dlia betona naruzhnoho sloia zhelezobetonnukh napornukh trub so stalnum serdechnykom [The use of polyfunctional modifiers for concrete outer layer of reinforced concrete pressure pipes with steel core]. Sb. Nauch. tr. UkrNYYHyM, 25-30. [in Russian].
18. Kovalenko, O.V. (2011). Polimertsementnyi fibrobeton – novyi kompozytsiinyi material dlia remontu ta rekonstruktsii hidrotekhnichnykh sporud [Polymer cement concrete is a new composition material for repair and reconstruction of the building machinery structure]. Melioratsiia i vodne hospodarstvo, 99, 311-322. [in Ukrainian].
19. Kovalenko, O.V. (2018). Samoushchilniuvalna fibrobetonna sumish [Self-compacting fibrous concrete mixture]. Ratent of Ukraine № 124130. [in Ukrainian].
20. Elshyn, Y.M., & Vlasenko V.A. (1967). Bezvlazhnostnui ukhod za monolytnum betonom v uslovyiakh zharkoho klymata yuha USSR [Humid care of monolithic concrete in a hot climate in the south of the Ukrainian SSR]. Vodnoe khoziaistvo, 6, 53-57. [in Russian].
21. Kovalenko, O.V., & Vitkovsky, Yu.A. (2010). Prosochuvalna polimerna kompozytsiia [Immersing polymer composition]. Ratent of Ukraine. № 46974. [in Ukrainian].
22. Kovalenko, O.V., & Vitkovsky, Yu.A. (2009). Sposib zakhystu ta remontu poverkhni zalizobetonnykh konstruktsii [Method of protection and repair of the surface of reinforced concrete structures]. Ratent of Ukraine. № 44450 Ukraine. [in Ukrainian].
23. Kovalenko, A.V., & Sharshunov, A.B. (1992). Kompzytsyia dlia propytky fyltruiushcheho betona [Composition for filter concrete impregnation]. USSR author's certificate № 1715791. [in Russian].
24. Kovalenko, A.V., & Sharshunov, A.B. (1993). Kompozytsyia dlia propytky fyltruiushcheho betona [Composition for filter concrete impregnation]. USSR author's certificate № 1825768. [in Russian].
25. Kovalenko O.V., Kruchenyuk V.D. (2013). Sposib zakhystu ta remontu zalizobetonnykh konstruktsii [Method of protection and repair of reinforced concrete structures]. Ratent of Ukraine. № 76451. [in Ukrainian].
26. Kovalenko O.V., Kruchenyuk V.D. (2013). Sposib ukriplennia i zakhystu budivelnykh konstruktsii [A method of strengthening and protecting building structures]. Ratent of Ukraine. № 76452. [in Ukrainian].
27. Kovalenko, O.V. (2018). Sposib ukriplennia ta zakhystu budivelnykh konstruktsii [A method of strengthening and protecting building structures]. Ratent of Ukraine № 130335. [in Ukrainian].
28. Kovalenko, O.V. (2018). Sposib ukriplennia ta zakhystu budivelnykh konstruktsii [A method of strengthening and protecting building structures]. Ratent of Ukraine. № 130336. [in Ukrainian].
29. Okopova, R.M. (1976). Oput remonta betonnykh y zhelezobetonnykh oblytsovok melyoratyvnykh system polymernymy materyalamy [Experience in repairing concrete and reinforced concrete linings of reclamation systems with polymeric materials]. Moskva: Ekspress informatsyia TsBNTY Minvodkhoza SSSR, 4, 6-9. [in Russian].
30. Zgholych, L.M. (1978). Polymertsementnye rastvory dlia zashchytnykh pokrytyi tsylyndrovukh trub malukh dyametrov [Polymer-cement solutions for protective coatings of small diameter cylinder tubes]. Melyoratsyia y vodnoe khoziaistvo, 44, 93-96. [in Russian].
31. Kovalenko, O.V., & Ageev, A.O. (2014). Sposib zakhystu ta remontu zalizobetonnykh konstruktsii [Method of protection and repair of reinforced concrete structures]. Ratent of Ukraine. № 94287 . [in Ukrainian].
32. Kovalenko, O.V., & Ageev, A.O. (2014). Sukha budivelna sumish dlia remontu ta vidnovlennia sporud [Dry building mix for repair and renovation of buildings]. Ratent of Ukraine. № 93583 [in Ukrainian].
33. Kovalenko, O.V., & Kruchenyuk V.D. (2013). Polimertsementnyi rozchyn [Polymercement solution]. Ratent of Ukraine. № 76448. [in Ukrainian].
34. Kovalenko, O.V., Sakara O.Yu. (2014). Fibrobetonna sumish [Fiber-concrete mixture]. Ratent of Ukraine. № 93579. [in Ukrainian].
35. Sharshunov, A.B., Zgholich, L. M., Vlasenko, V.O., & Lytvynenko, P. Ie. (2004). Budivelni materialy dlia pidvyshchennia ekspluatatsiinoi nadiinosti hidrotekhnichnykh sporud. [Building materials for improving the operational reliability of hydraulic structures]. Melioratsiia i vodne hospodarstvo, 90, 237-245. [in Ukrainian].
36. Kovalenko, O.V., & Ageev, A.O. (2014). Sukha budivelna sumish dlia remontnykh hidroizoliuiuchykh rozchyniv. [Dry construction mixture for repair waterproofing solutions]. Ratent of Ukraine. № 93586. [In Ukrainian].
Published
2019-12-12
How to Cite
Kovalenko, O. (2019). IMPROVING THE OPERATIONAL RELIABILITY OF HYDRAULIC FACILITIES WHEN USING POLYMER AND POLYMER-CEMENT COMPOSITES. Land Reclamation and Water Management, (2), 217 - 230. https://doi.org/10.31073/mivg201902-184