LABORATORY DIAGNOSTIC SYSTEM FOR WATER-PHYSICAL SOIL PROPERTIES

Keywords: soil laboratory diagnostics, water-physical properties and constants, hydrophysical functions, capillary hysteresis, structural macroporosity.

Abstract

Actuality of the problem. Irrigation has become a determining factor in the formation of bioproduction processes of new agricultural crop varieties and hybrids due to global climate change for all soil-climatic zones of Ukraine. Moreover, irrigation efficiency is determined to a significant degree by the reliability of the soil water-physical properties. The purpose of comprehensive hydrophysical studies was to determine the basic soil water-physical properties and constants necessary to create favorable soil regimes of reclaimed lands, and to do the mathematical modeling of the soil water regime. Complex laboratory hydrophysical tests of soil samples of undisturbed structure make it possible to determine hydrophysical functions for each soil sample: water holding capacity, water conductivity and water-physical constants of full and minimum moisture capacity, wilting moisture and maximum hygroscopic moisture, which can be determined on the same soil sample located on the same soil desorption curve from full moisture capacity to maximum hygroscopic humidity. The primary saturation of the soil sample under vacuum to full moisture capacity provides a single curve of water retention capacity taking into account structural macroporosity, which is the main feature of this technique. The resulting capillary hysteresis loop has the algorithm: fast nonequilibrium desorption from full moisture capacity and slow equilibrium sorption enables to build a differential curve of the distribution of pore volume over radii, characterizing the structure of the soil pore space. These structural characteristics are sensitive to soil processes, which determine the direction of epigenetic changes in the structure of the soil pore space and the direction of evolution of the soil matrix. The threshold of structural soil macroporosity formation is established from the loop of capillary hysteresis by the ratio of meniscus radii exceeding . Conclusions. The proposed system of soil laboratory diagnostics has advantages over the existing diagnostic methods and significantly increases the information content of complex hydrophysical tests, provides qualitatively new information on soils and provides mathematical modeling with the necessary parameters of mass transfer processes in moisture-saturated soils of the aeration zone.

Author Biographies

M. I. Romashchenko, Institute of Water Problems and Land Reclamation NAAS, Kyiv

Doctor in Technical sciences

S. S. Kolomiets, Institute of Water Problems and Land Reclamation NAAS, Kyiv

Ph. D. in agricultural sciences

A. S. Bilobrova, Institute of Water Problems and Land Reclamation NAAS, Kyiv

Ph. D. student

References

1. Vadyunyna, A.F., & Korchahyna, Z.A. (1986). Metodu yssledovanyya fyzycheskykh svoystv pochv [Methods of studying the physical properties of soils]. Moskva: Ahropromyzdat. [in Russian].
2. Veryho, S. A., & Razumova, L. A. (1973). Pochvennaya vlaha (prymenytel'no k zaprosam sel'skoho khozyaystva) [Soil moisture (as applied to agricultural needs)]. Lenynhrad: Hydrometeoyzdat. [in Russian].
3. Voronyn, A.D. (1984). Strukturno-funktsyonal'naya hydrofyzyka pochv [Structural and functional hydrophysics of soils]. Moskva: Yzd. MHU. [in Russian].
4. Hlobus, A.M. (1969). Eksperymental'naya hydrofyzyka pochv [Experimental soil hydrophysics]. Lenynhrad: Hydrometeoyzdat. [in Russian].
5. Hlobus, A.M. (1987). Pochvenno-hydrofyzycheskoe obespechenye ahroekolohycheskykh matematycheskykh modeley [Soil hydrophysical information for agro-ecological modelling]. Lenynhrad: Hydrometeoyzdat. [in Russian].
6. Pochvy. Metody opredeleniya vlazhnosty, maksymal'noy gigroskopycheskoy vlazhnosty y vlazhnosty ustoychyvoho zavyadanyya rastenyy [The soil. Methods for determination of moisture, maximum hygroscopic moisture and wilting moisture plants]. (1990). GOST 28268-89. Mezhhosudarstvennyi standart. Moskva: Yzdatel'stvo standartov. [in Russian].
7. Dzekunov, N.E., Zhernov, Y.E., & Faybishenko, B.A. (1987). Termodynamycheskye metody yzuchenyya vodnoho rezhyma zony aeratsyy [Thermodynamic methods for studying the water regime of the aeration zone]. Moskva: Nadra. [in Russian].
8. Yakist' gruntu. Vyznachannya vodoutrymuval'noyi kharakterystyky. Laboratorni metody: GOST [Soil quality. Determination of water retention characteristics. Laboratory methods]. (2003). (ISO 11274:1998, IDT). DSTU ISO 11274:2001. Natsionalnyi standart Ukrainy. Kyiv: Derzhspozhyvstandarty Ukrayiny. [in Ukrainian].
9. Yakist' gruntu. Vyznachannya tysku porovoyi vody. Metod z vykorystannyam tenziometra. [Soil quality. Determination of pore water pressure. Method using a tensiometer]. (2002). Natsionalnyi standart Ukrainy. Kyiv: Derzhspozhyvstandarty Ukrayiny. [in Ukrainian].
10. Yakist' gruntu. Gruntova voda ta nenasychena zona. Vyznachennya, poznachennya ta teoriya (2004). Natsionalnyi standart Ukrainy. Kyiv: Derzhspozhyvstandarty Ukrayiny. [in Ukrainian].
11. Kolomiyets', S.S. (1999). Ekolohichna kharakterystyka gruntu [Ecological characteristics of the soil]. Visnyk ahrarnoi nauky, 12, 9-13. [in Ukrainian].
12. Kornev, V.H. (1925). Vsasyvayushchaya syla pochvy y pryntsypy systemy avtomatycheskoho oroshenyya pochvy [The suction force of the soil and the principles of the system of automatic irrigation of the soil]. Moskva: Yzdanye HYSKhM. [in Russian].
13. Kossovych, P.S. (1904). Zhurnal opytnoy ahronomyy [Journal of Experimental Agronomy]. Special journal, 5. [in Russian].
14. Lebedev, A.F. (1936). Pochvennye y hruntovye vody [Soil and groundwater]. Moskva: AN SSSR. [in Russian].
15. Muromtsev, N.A. (1991). Melyoratyvnaya hydrofyzyka pochv [Soil reclamation hydrophysics]. Lenynhrad: Hydrometeoyzdat. [in Russian].
16. Rozporyadzhennya Kabinetu Ministriv Ukrayiny Pro skhvalennya Stratehiyi zroshennya ta drenazhu v Ukrayini na period do 2030 roku № 688 [Order of the Cabinet of Ministers of Ukraine on the Approval of the Irrigation and Drainage Strategy in Ukraine until 2030 year № 688]. (2019, September 6). Uryadovyy kur’yer, 170, 13-14. [in Ukrainian].
17. Rode, A. A. (1965). Osnovy uchenyya o pochvennoy vlahe [Soil Moisture Basics]. Lenynhrad: Hydrometeoyzdat. [in Russian].
18. Romashchenko, M.Y. (1992) Nekotorue aspektu obosnovanyya umen'shenyya orosytel'nukh norm. Vestnyk ahrarnoy nauky, 4, 35-39. [in Russian].
19. Romashchenko, M.Y. (1995). Kontseptsyya formyrovanyya vodosberehayushchykh ekolohychesky bezopasnykh rezhymov oroshenyya sel'skokhozyaystvennykh kul'tur. Ekolohycheskye problemy pry vodnykh melyoratsyyakh : tezysy dokladom nauchno-proyzvodstvennoy konferentsyy stran SNH [The concept of the formation of water-saving environmentally security irrigation regimes of crops ]. Ekolohycheskye problemu pry vodnukh melyoratsyyakh: Nauchno-proyzvodstvennoy konferentsyy stran SNH, Kyev: IHEaLR UAAN, 66-68. [in Ukrainian].
20. Yatsyk, M.V., & Kolomiyets', S.S. (2009). Sposib vyznachennya struktury porovoho prostoru gruntiv (dyspersnykh seredovyshch) [Method for determination of structure of porous space of earths (disperse media)]. Patent of Ukraine. №45287. [in Ukrainian].
21. Sheyn, E.V. (2005). Kurs fyzyky pochv [Soil Physics Course]: uchebnyk. Moskva: Yzd-vo MHU. [in Russian].
Published
2019-12-12
How to Cite
Romashchenko, M., Kolomiets, S., & Bilobrova, A. (2019). LABORATORY DIAGNOSTIC SYSTEM FOR WATER-PHYSICAL SOIL PROPERTIES. Land Reclamation and Water Management, (2), 199 - 208. https://doi.org/10.31073/mivg201902-193