Impact of climate change on water resources and agricultural production

Keywords: water resources, agricultural production, climate change, moisture supply, zoning, water balance, productivity

Abstract

The article highlights the research results on the assessment of natural moisture supply in Ukraine, the state of water resources and agricultural production in the face of modern climate change taking into account the forecast for the medium and long term prospects. It was established that the rate of air temperature growth for the period of 1975-2019 in Ukraine ranges from 0.61 to 0.82oC, while in neighboring post-Soviet countries (Russia, Moldova, Belarus) – this figure is 0.47 - 0.59oC, and in the northern hemisphere and Europe – it is 0.34 and 0.47oC respectively. These data show that the rate of air temperature rise in Ukraine is much higher compared to European countries and the whole world. The rapid rise in average annual temperature in Ukraine is not accompanied by a significant increase in precipitation. Its amount in Ukraine as well as in some other regions remains virtually unchanged. Due to the steady increase in temperature, the area of ​​Ukraine with a significant deficit of natural moisture supply for the period of 1990-2015 increased by 7%, and with excessive and sufficient natural moisture supply, on the contrary, decreased by 10%. If the current warming rates are kept until 2050 and 2100, the territory of the country with insufficient humidity will increase up to 56 and 71%, respectively. As a result of such changes, there is a high probability of medium and long-term prospects of increasing arable land with insufficient natural moisture supply up to 20.6 million hectares (67%) and up to 24.9 million hectares (80%) with a simultaneous decrease in arable land with sufficient natural moisture supply up to 5.5 - 1.8 million hectares. At present, the potential total evaporation is 40-45 km3/year higher than in 1990. As a result, despite the decrease in water consumption, the total amount of water consumption taken from the territory of Ukraine is 20-25 km3 higher. Further climate change will lead to an increase in the volume of additional water consumption till 2050 by 80 km3, and till 2100 - by almost 150 km3 compared to 1990. Modern climate change has significantly affected the cropping systems and their productivity at regional level. The average yield of grain and legumes in the Forest-Steppe and Polissya compared to 1990 increased by 46-61%, and in the Steppe it decreased by 10%. A similar trend is observed with regard to the changes in the productivity of other major cereals, except corn, the yield of which increased in all areas, but in the Forest-Steppe and Polissya by 71-82%, and in the Steppe - only by 9%. The general increase in the production of grain and legumes in the country for the last years was only due to more humid regions - Polissya and Forest-Steppe. Climate change, which has already taken place, proved to be favorable for the spread of the most economically profitable crops in the north of the country, while limiting their production in the south. Thus, in the face of climate change, the conditions of moisture supply in the territory of Ukraine are the main limiting factor that limits not only the level of crop productivity, but also the use of natural and anthropogenic potential of agriculture.

Author Biographies

M. I. Romashchenko, Institute of Water Problems and Land Reclamation NAAS, Kyiv

Dr. habil. in technical sciences

Yu. V. Husyev, Kherson Regional State Administration, Kherson

Ph. D.

A. P. Shatkovskyi, Institute of Water Problems and Land Reclamation of NAAS, Kyiv

Dr. habil. in technical sciences

R. V. Saidak, Institute of Water Problems and Land Reclamation of NAAS, Kyiv

Ph. D.

M. V. Yatsyuk, Institute of Water Problems and Land Reclamation of NAAS, Kyiv

Ph. D.

A. M. Shevchenko, Institute of Water Problems and Land Reclamation of NAAS, Kyiv

Ph. D.

T. V. Matiash, Institute of Water Problems and Land Reclamation of NAAS, Kyiv

Ph. D.

References

1. Kislov, A.V. (2016). Klimatologiya s osnovami meteorologii [Climatology with the basics of meteorology]. Moskva: Akademiya. [in Russian].
2. Makarov, I. A. (2013). Globalnoe izmenenie klimata kak vyizov mirovoy ekonomike i ekonomicheskoy nauke [Global climate change as a challenge to the global economy and economic science]. Ekonomicheskiy zhurnal VShE, 3, 479–494. [in Russian].
3. Porfirev, B.N. (2008). Ekonomika klimaticheskih izmeneniy [The economy of climate change]. Moskva: Ankil. [in Russian].
4. Velasco-Muñoz, J., Aznar-Sánchez, J., Belmonte-Ureña, L., & Román-Sánchez, I. (2018). Sustainable Water Use in Agriculture: A Review of Worldwide Research. Sustainability, 10(4), 1084. doi:10.3390/su10041084
5. Cook, J., et al, (2016). Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environmental Research Letters, Vol. 11, 4. https://doi.org/10.1088/1748-9326/11/4/048002
6. Anderegg, W. R., Prall, J. W., Harold, J., & Schneider, S. H. (2010). Expert credibility in climate change. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12107–12109. https://doi.org/10.1073/pnas.1003187107
7. WMO. (2020). WMO Statement on the State of the Global Climate in 2019.
8. NASA. (2020). Global Temperature. Retrieved from https://climate.nasa.gov/vital-signs/global-temperature/
9. IPCC. (2020). Climate Change and Land. An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems Retrieved from https://www.ipcc.ch/site/assets/uploads/sites /4/2020/02/SPM_Updated-Jan20.pdf
10. United Nations Framework Convention on Climate Change, United Nations 1992, FCCC/INFORMAL/84, GE.05-62220 (E) 200705. Retreived from https://unfccc.int/resource/docs/convkp/conveng.pdf
11. Unep. (1994). United Nations convention to combat desertification. Retreived from https://www.unccd.int/official-documents
12. Protocol, K. (1998). United Nations framework convention on climate change. Kyoto Protocol, Kyoto, 19. Retreived from https://unfccc.int/resource/docs/convkp/kpeng.pdf
13. Agreement, P. (2015). United nations. United Nations Treaty Collect, 1-27. Retreived from: https://treaties.un.org/doc/Treaties/2016/02/20160215%2006-03%20PM/Ch_XXVII-7-d.pdf
14. Pro skhvalennia Kontseptsii realizatsii derzhavnoi polityky u sferi zminy klimatu na period do 2030 roku [About the concept of realizing state power politics in the sphere of climate for the period up to 2030]. (2016, december 7). № 932-r. Kyiv: Kabinet Mynistriv Ukrainu. Retreived from: https://www. kmu. gov. ua/ua/npas/249573705.[in Ukrainian].
15. Loboda, N. S., Serbova, Z. F., & Bozhok, Yu. V. (2014). Vplyv zmin klimatu na vodni resursy Ukrainy u suchasnykh ta maibutnikh umovakh (za stsenariiem hlobalnoho poteplinnia A1V) [Impact of climate change on Ukraine's water resources in current and future conditions (according to the scenario of global warming A1B)]. Ukrainskyi hidrometeorolohichnyi zhurnal, (15), 149-159. [in Ukrainian].
16. Snizhko, S., Yatsiuk, M., Kuprikov, I., Shevchenko, O., Strutynska, V., Krakovska, S., & Shedemenko, I. (2012). Otsinka mozhlyvykh zmin vodnykh resursiv mistsevoho stoku v Ukraini v KhKhI stolitti [Assessment of possible changes in water resources of local runoff in Ukraine in the XXI century]. Vodne hospodarstvo Ukrainy, 6, 102. [in Ukrainian].
17. Vyshnevskyi, V. I. (2001). Zminy klimatu i richkovoho stoku na terytorii Ukrainy i Bilorusi [Climate change and river runoff in Ukraine and Belarus]. Nauk. pratsi UkrNDHMI, 249, 89-105. [in Ukrainian].
18. Arnell, N. W. (2004). Climate change and global water resources: SRES emissions and socio-economic scenarios. Global environmental change, 14(1), 31-52. https://doi.org/10.1016/j.gloenvcha.2003.10.006
19. Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. science, 313(5790), 1068-1072.
20. Heinke, J., Müller, C., Lannerstad, M., Gerten, D., & Lucht, W. (2019). Freshwater resources under success and failure of the Paris climate agreement. Earth System Dynamics, 10(2).
21. Anderson, W. B., Seager, R., Baethgen, W., Cane, M., & You, L. (2019). Synchronous crop failures and climate-forced production variability. Science advances, 5(7). doi:10.1126/sciadv.aaw1976
22. Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287-291.
23. Carter, T. R., Parry, M. L., & Porter, J. H. (1991). Climatic change and future agroclimatic potential in Europe. International Journal of Climatology, 11(3), 251-269.
24. Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the national academy of sciences, 104(50), 19691-19696.
25. Romashchenko, M.I., Saydak, R.V. & Matyash, T.V. (2019) Development of irrigation and drainage as the basis of sustainable agriculture in Ukraine in climate change. Modern problems of water management, environmental protection, architecture and construction: IX International scientific and technical conference. Georgia, 243-250.
26. Oskolsky, V.V. (2012) Ekonomicni aspekty upravlinnya vodnymy resursamy ta vodokorystyvannya. [Economic aspect of water management and water using]. Ratsionalne vykorystannia vodnykh resursiv yak faktor zabezpechennia natsionalnoi bezpeky Ukrainy: Materialy VII Plenumu Spilky ekonomistiv Ukrainy ta Vseukrainskoi naukovo-praktychnoi konferentsii. Kyiv.[in Ukrainian].
27. Tarariko Y.O., Saydak, R.V., Soroka, Y.V., & Vitvitsʹkiy S.V. (2016). Rayonuvannya territoriy Ukrainy za rivnem zabezpechenosti hidrotermichnimi resursamy ta obsyahami ispolʹzovanye silʹsʹkohospodarsʹkykh melioratsiy [Raionuvannia terytorii Ukrainy za rivnem zabezpechenosti hidrotermichnymy resursamy ta obsiahamy vykorystannia silskohospodarskykh melioratsii]. Kyiv: Instytut vodnykh problem i melioratsiyi NAAN Ukrainy. [in Ukrainian].
28. Natsionalni rakhunky Ukrainy za 2018 rik. [National accounts of Ukraine for 2018. Statistical collection]. (2020). Statystychnyi zbirnyk. Kyiv: Derzhavna sluzhba statystyky Ukrainy. [in Ukrainian].
29. Bandoc, G., & Prăvălie, R. (2015). Climatic water balance dynamics over the last five decades in Romania’s most arid region, Dobrogea. Journal of Geographical Sciences, 25(11), 1307-1327.
30. UkrHMI. (2013).Rozroblennia stsenariiv zminy klimatychnykh umov v Ukraini na seredno- ta dovhostrokovu perspektyvu z vykorystanniam danykh hlobalnykh ta rehionalnykh modelei [Development of scenarios for climate change in Ukraine in the medium and long term using data from global and regional models]. Zvit pro NDR (zakliuchni, 2013). Kyiv: UkrHMI. [in Ukrainian].
31. Pasov, V. M. (1986). Izmenchivost urozhaev i otsenka ozhidaemoy produktivnosti zernovyih kultur [Yield variability and estimation of expected grain productivity.]. L.: Gidrometeoizdat. [in Russian].
32. Yak zminiuietsia klimat v Ukraini.[How the climate in Ukraine is changing ]. Retrieved from https://menr.gov.ua/news/34871.html [in Ukrainian].
33. Obzor sostoyaniya i tendentsiy izmeneniya klimata v 2019 [Overview of the status and trends of climate change in 2019.]. Retrieved from http://seakc.meteoinfo.ru/images/seakc/monitori ng/seakc-2019v.pdf [in Russian].
34. European Environment Agency. (2008). Impacts of Europe's changing climate: 2008 indicator-based assessment (No. 4). European Communities.
35. Baumgartner, A., & Liebscher, H. J. (1990). Lehrbuch der Hydrologie. Allgemeine Hydrologie, quantitative Hydrologie. Berlin, Stuttgart.
36. Stagl, J., Mayr, E., Koch, H., Hattermann, F. F., & Huang, S. (2014). Effects of climate change on the hydrological cycle in central and eastern Europe. In Managing Protected Areas in Central and Eastern Europe Under Climate Change (pp. 31-43). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7960-0_3
37. Bates, B., Kundzewicz, Z., & Wu, S. (2008). Climate change and water. Intergovernmental Panel on Climate Change Secretariat.
38. UCAR Center for Science Education Climate change affects evaporation and precipitation (2011) The Water Cycle and Climate Change. Retreived from https://scied.ucar.edu/longcontent/water-cycle-climate-change
39. SAWR. (2020). Derzhvodahentstvo vpershe mozhe obmezhyty prava vodokorystuvachiv [For the first time, the State Water Agency may restrict the rights of water users]. Retreived from https://www.davr.gov.ua/news/derzhvodagentstvo-vpershe-mozhe-obmezhiti-prava-vodokoristuvachiv [in Ukrainian].
40. Shevchuk, S. A., & Vyshnevskyi, V. I. (2019). Zminy zvolozhenosti Ukrainskoho Polissya ta yikh naslidky [Changes in humidity of the Ukrainian Polisya and their consequences]. Ekologia i vyrobnytstvo, 5, 35. [in Ukrainian].
41. S.M. Stepanenko, A.M. Polovyi. (Ed.). (2011). Otsinka vplyvu klimatychnykh zmin na haluzi ekonomiky Ukrainy: monohrafiia.[ Estimation of influence of climatic changes on branch of economy of Ukraine: monograph]. Odessa: Ekologia. [in Ukrainian].
42. Stratehiia zroshennia ta drenazhu v Ukraini na period do 2030 roku [Irrigation and drainage strategy in Ukraine until 2030]: Skhvaleno rozporiadzhenniam Kabinetu Ministriv Ukrainy № 688-r. (2019, August 14). Uriadovyi kurier, 170. Retrieved from: https://zakon.rada.gov.ua/laws/show/688-2019-%D1%80 [in Ukrainian].
Published
2020-06-25
How to Cite
Romashchenko, M., Husyev, Y., Shatkovskyi, A., Saidak, R., Yatsyuk, M., Shevchenko, A., & Matiash, T. (2020). Impact of climate change on water resources and agricultural production. Land Reclamation and Water Management, (1), 5 - 22. https://doi.org/10.31073/mivg202001-235