Effects of hydrothermal conditions on agrophysical properties of typical chernozem and crop rotation productivity in the system of organic farming

Keywords: correlation, hydrothermal conditions, soil density, yield, crop rotation, net profit, organic products

Abstract

Relevance of research. Having the variability of hydrothermal conditions, the rate of plant life, the intensity of photosynthesis and evaporation and the activity of plant nutrient consumption change. As a rule, the optimization of the water-air regime of the soil by conducting various types of amelioration makes it possible to significantly reduce the negative effects of adverse weather conditions and ensure high sustainability of agroecosystems. However, with regard to the requirements for organic agriculture in the regions with a shortage of water supply without sufficient water resources and without the use of fertilizers to effectively conduct agricultural production is problematic. Thus, the establishment of the patterns of the dynamics of agrophysical soil properties, taking into account their impact on the bioproductivity of agrophytocenoses under variable weather conditions is the theoretical basis for solving the problem of increasing agricultural sustainability, in particular using only natural fertility and obtaining organic crop products.

Purpose and objectives of research: To establish the mechanisms of changes in the nutrient regime of typical chernozem, its agrophysical properties and crop yields in different crop rotations in relation to the dynamics of agrometeorological factors under the conditions of insufficient water supply in the eastern Forest-Steppe of Ukraine; to evaluate the productivity potential of cereals and grain crops in the system of organic farming without the use of mineral fertilizers.

Research methods and techniques. Evaluation of the changes in agrometeorological resources of the territory was carried out using the method of mathematical and statistical analysis of the indicators of heat and moisture supply conditions: climatic water balance and precipitation. The data obtained from the stationary experiment were processed by the methods of system generalization, correlation, economic, calculation and comparative analyzes.

Research results and main conclusions. Based on the information obtained in the course the stationary agrotechnical experiment it was established that the soil density changes over the years and depends on the hydrothermal conditions with the approximation certainity of (R2) 0.75. The inverse relationship between the specific weight of the soil and its water conductivity in terms of crop rotations with R2=0.8-0.9, by years with R2=0.6 was revealed. The variation coefficient of legumes yield was 30-33%, winter wheat – 33-37%, spring barley – 36-37%, which are the indicators of its low stability over the years. Crop yields, depending on the weather conditions of the year, also fluctuated significantly: peas between 0.8-3.2, lathyrus – 0.8-2.6, winter wheat – 0.6-6.8, buckwheat – 0.6-1.9, spring barley – 0.6-3.5 t/ha. Crop rotation with peas in terms of productivity of 2.4 t/ha of grain on average outperformed the others (2.2 and 2.0 t/ha) while maintaining the patterns of fluctuations of this indicator in relation to hydrothermal conditions.

Having the average statistical selling price, the yield per 1 ha of crop rotation area of all studied crop rotations was almost the same with the fluctuations in the unfavorable years of 27-35 c. u./ha, in favorable ones – 97-104 c. u./ha, with the average value of 66-73 c. u./ha. If we assume that the selling price of organic products will be 25% higher than usual, the average annual yield will triple.

Prospects for further research should correspond to the global trend of scientific research aimed at developing conceptual bases for the effects of hydrothermal conditions on agrophysical soil properties, taking into account their impact on bioproductivity of agrophytocenoses as a theoretical basis for solving the problem of increasing agricultural sustainability, in particular, using only the natural fertility of the organic-oriented model of developing the agricultural sector of the economy.

Author Biography

S. I. Kudria, Kharkiv National Agrarian University named after V. V. Dokuchaiev, Kharkiv, Ukraine

Ph. D. in agriculture sciences

References

1. Kryvoshein, O. O., Odnolietok, L. P. & Dziuba, L. P. (2016). Otsinka vplyvu pohodnykh umov ta orhanizatsiino-tekhnolohichnykh zakhodiv na urozhainist ozymoi pshenytsi za yii klimatychnym potentsialom [Assessment of the impact of weather conditions and organizational and technological measures on the yield of winter wheat by its climatic potential]. Naukovi pratsi UkrNDHMI, 269, 151-158. [in Ukrainian].
2. Miuller, D., Yunhandreas, A., Kokh, F., & Shirkhorn, F. (2016). Vplyv klimatychnykh zmin na vyrobnytstvo pshenytsi v Ukraini [The impact of climate change on wheat production in Ukraine]. Kyiv.
3. Heino, M., Guillaume, J.HA., & Muller, C. (2020). A multi-model analysis of teleconnected crop yield variability in a range of cropping systems. COPERNICUS GESELLSCHAFT MBH, Vol.11, Iss. 1,113-128. doi: 10.5194/esd-11-113-2020.
4. Anderson, W. B., Seager, R., & Baethgen, W. (2019). Synchronous crop failures and climate-forced production variability. SCIENCE ADVANCES, Vol.5, Iss.7, Article Number: eaaw 1976. doi:10.1126/sciadv.aaw1976.
5. Challinor, A. J., Watson, J.,& Lobell, D. B. (2018). A meta-analysis of crop yield under climate change and adaptation.; et al. NATURE CLIMATE CHANGE, Vol. 4, Iss. 4, 287-291. doi:10.1038/NCLIMATE2153.
6. Panfilova, A. V., & Hamaiunova, V. V. (2018). Formuvannia nadzemnoi masy sortiv pshenytsi ozymoi zalezhno vid optymizatsii zhyvlennia v umovakh Pivdennoho Stepu Ukrainy [Formation of aboveground mass of winter wheat varieties depending on nutrition optimization in the conditions of the Southern Steppe of Ukraine]. Visnyk Lvivskoho natsionalnoho ahrarnoho universytetu. Ahronomiia, 22(1), 332-339. [in Ukrainian].
7. Saiko, V. F., Maliienko, A. M., & Mazur, H. A. et al. (1993). Stalist zemlerobstva: problemy i shliakhy vyrishennia [Sustainability of agriculture: problems and solutions]. V. F. Saiko (Ed.). Kyiv: Urozhai. [in Ukrainian].
8. Romashchenko, M. I., & Tarariko, Yu. O. (Ed.). (2017). Meliorovani ahroekosystemy. Otsinka ta ratsionalne vykorystannia ahroresursnoho potentsialu Ukrainy (zony zroshennia i osushennia) [Reclaimed agroecosystems. Assessment and rational use of agro-resource potential of Ukraine (irrigation and drainage zones)]. Kyiv; Nizhyn: P P Lysenko M. M. [in Ukrainian].
9. Dovhal, H. P. (2017). Otsinka zalezhnosti urozhainosti ozymoi pshenytsi vid vplyvu meteorolohichnykh faktoriv v umovakh zony Lisostepu [Estimation of dependence of winter wheat yield on influence of meteorological factors in the conditions of the Forest-Steppe zone]. Visnyk Poltavskoi derzhavnoi ahrarnoi akademii, 1-2, 157-160. [in Ukrainian].
10. Kalytka, V. V. (2009). Innovatsii v intensyvnykh tekhnolohiiakh vyroshchuvannia zernovykh kultur za umov hlobalnoho poteplinnia i arydyzatsii klimatu Stepovoi zony Ukrainy [Innovations in intensive technologies of grain growing under conditions of global warming and aridization of the climate of the Steppe zone of Ukraine]. Innovatsiini ahrotekhnolohii v umovakh hlobalnoho poteplinnia: Mizhnar. nauk.-prakt. konf.: materialy tez. Melitopol: TDATU, 1, 64-66. [in Ukrainian].
11. Lai, L., Kumar, S., Chintala, R., Owens, V. N., Clay, D., Schumacher, J., Nizami, A. S., Lee, S. S., Rafique, R. (2016). Modeling the impacts of temperature and precipitation changes on soil CO2 fluxes from a Switchgrass stand recently converted from cropland. J Environ Sci (China), № 43, 15-25.
12. North-Eurasian Climate Center – Review of the state of climate change for 2016 (January-December).
13. Deryng, D., Sacks, W. J., Barford, C. C., & Ramankutty, N. (2011). Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochem. Cycles, 25, GB2006. doi:10.1029/2009GB003765.
14. Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19691–19696. doi: 10.1073/pnas.0701890104.
15. Holzkämper, A., Calanca, P., & Fuhrer, J. (2013). Identifying climatic limitations to grain maize yield potentials using a suitability evaluation approach. Agricultural and Forest Meteorology. 168. 149– 159. doi: 10.1016/j.agrformet.2012.09.004
16. Statsionarni polovi doslidy Ukrainy. Reiestr atestativ [Stationary field experiments in Ukraine. Register of certificates]. (2014). Kyiv: Ahrar. nauka. [in Ukrainian].
17. Kulyk, M. I., & Rozhko, I. I. (2017). Vplyv pohodnykh umov vehetatsiinoho periodu na elementy produktyvnosti ta urozhainosti prosa prutopodibnoho [The influence of weather conditions of the growing season on the elements of productivity and yield of millet]. Visnyk Poltavskoi derzhavnoi ahrarnoi akademii, 4, 50-55. [in Ukrainian].
18. Romashchenko, M. I., Vozhehova, R. A., & Shatkovskyi, A. P. (Ed.). (2017). Naukovi zasady rozvytku ahrarnoho sektora ekonomiky pivdennoho rehionu Ukrainy [Scientific principles of development of the agricultural sector of the economy of the southern region of Ukraine]. Kherson: OLDI-PLIUS. [in Ukrainian].
19. Brounov, P. Y. (1957). Yzbrannye sochynenyia. Selskokhoziaistvennaia meteorolohyia [Selected works. Agricultural meteorology]. (Vol 2). Lenynhrad: Gidrometeoizdat. [in Russian].
20. Doyarenko A. G. (1966). Faktory zhizni rasteniy [Plant life factors]. Moskva: Sel'khozgiz. [in Russian].
21. Zoidze, Ye. K. (1987). Pogoda, klimat i effektivnost' truda v zemledelii [Weather, climate and labor efficiency in agriculture]. Leningrad: Gidrometeoizdat. [in Russian].
22. Kuperman, I. A. (1972). K regulyatsii sootvetstviya mezhdu urovnyami azotnogo pitaniya u vysshikh nazemnykh rasteniy [Regulating the correspondence between nitrogen nutrition levels in higher terrestrial plants]. Fiziologicheskiye mekhanizmy adaptatsii i ustoychivosti rasteniy. Novosibirsk: Nauka, 1, 5-33. [in Russian].
23. Toomіng, Kh. G. (1977). Solnechnaya radiatsiya i formirovaniye urozhaya [Solar radiation and crop formation]. Leningrad: Gidrometeoizdat. [in Russian].
24. Korovin, A. I. (1972). Rol' temperatury v mineral'nom pitanii rasteniy [The role of temperature in mineral nutrition of plants]. Leningrad: Gidrometioizdat. [in Russian].
25. Mishchenko, Z. A. (1962). Sutochnyy khod temperatury vozdukha i yego agroklimaticheskoye znacheniye [Daily variation of air temperature and its agroclimatic value]. Leningrad: Gidrometeoizdat. [in Russian].
26. Kulik. M. S. (1970). Agrometeorologicheskiye aspekty povysheniya produktivnosti zemledeliya [Agrometeorological aspects of increasing the productivity of agriculture]. Obninsk. [in Russian].
27. Sapozhnikov. N. A. (1973). Azot v zemledelii nechernozemnoy polosy [Nitrogen in agriculture of the non-chernozem belt]. Leningrad: Kolos. [in Russian].
28. Nikolayev. M. V. (1994). Sovremennyy klimat i izmenchivost' urozhayev [Modern climate and crop variability]. Sankt-Peterburg: Gidrometeoizdat. [in Russian].
29. Sirotenko. O. D.. & Abashina Ye. V. (1994). Vliyaniye global'nogo potepleniya na agroklimaticheskiye resursy i produktivnost' sel'skogo khozyaystva Rossii [Impact of global warming on agro-climatic resources and agricultural productivity in Russia]. Meteorologiya i gidrologiya. 4, 101-111. [in Russian].
30. Georgeta. B., & Remus. P. (2015). Climatic water balance dynamics over the last five decades in Romania’s most arid region, Dobrogea. J. Geogr. Sci., №25(11), 1307-1327.
31. Dospekhov, B. A. (1965). Metodika polevogo opyta [Methods of field experience]. V. Ye. Yegorov (Ed.). Moskva: Kolos. [in Russian].
32. Konstantinov, P. N. (1952). Osnovy sel'skokhozyaystvennogo opytnogo dela [Agricultural experimental basics]. Moskva: Sel'khozgiz. [in Russian].
33. Yeshchenko, V. O., Kopytko, P. H., Opryshko, V. P., & Kostohryz, P. V. (2005). Osnovy naukovykh doslidzhen v ahronomii [Fundamentals of scientific research in agronomy]. Kyiv: Diia. [in Ukrainian].
34. Kudzin, Yu. K. (1963). Otbor rastitel'nykh prob kukuruzy v pole i podgotovka ikh dlya analiza [Taking crop samples of corn in the field and preparing them for analysis]. Metodicheskiye ukazaniya geograficheskoy seti polevykh opytov s udobreniyami, 9, 10-14. [in Russian].
35. Lakin, G. F. (1990). Biometriya [Biometrics]. Moskva: Vyssh. shk. [in Russian].
36. Silske hospodarstvo Ukrainy [Agriculture of Ukraine]. (2016). Kyiv: Derzhavna sluzhba statystyky Ukrainy, 2-246. [in Ukrainian].
37. Adamenko, T. I. (2014). Ahroklimatychne zonuvannia terytorii Ukrainy z vrakhuvanniam zminy klimatu [Agroclimatic zoning of the territory of Ukraine taking into account climate change]. Bila Tserkva: TOV «RIA» BLITs. [in Ukrainian].
Published
2020-12-21
How to Cite
Kudria, S. (2020). Effects of hydrothermal conditions on agrophysical properties of typical chernozem and crop rotation productivity in the system of organic farming. Land Reclamation and Water Management, (2), 70 - 80. https://doi.org/10.31073/mivg202002-250

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.