Modern approaches to treatment and recovery of secondary sludge of domestic sewage

Keywords: sewage treatment facilities, sewage sludge, activated sludge

Abstract

For today, pollution of the environment, in particular of surface waters, has led to an environmental crisis in many countries of the world. One of the reasons for this is the use of outdated approaches to the treatment and recovery of sewage sludge. The article presents the results of the study of literary sources in order to analyze the proposals for the treatment of secondary sludge of domestic sewage in different countries. To neutralize sewage sludge, scientists consider the possibility of obtaining fertilizes under conditions of biosulfidogenesis during the dissimilation recovery of poorly soluble sulfates or the use of enhanced oxidation technology.

A new concept of domestic sewage treatment has also been proposed, which can solve the issue of sewage sludge control at the place of its forming. The main areas of sustainable sludge control are its use in agriculture as fertilizer and for the reclamation of devastated or degraded lands, as well as energy recovery by burning and alternative thermal methods such as pyrolysis, quasi-pyrolysis and gasification. It was established that the applicability of this or that technology of sewage sludge recovery depends on many local factors, in particular: productivity of sewage station; composition and methods of sewage treatment and its sediments; efficiency of sewage treatment plants; climatic zone of the sewage system location; availability of energy and material resources, etc.

Today, it is relevant to monitor the qualitative composition of sewage sludge, as well as soils and natural waters regarding pollutants that can be detected in the sewage of the corresponding settlement, in order to make operational decisions to control environmental risks, as well as conduct scientific research to improve recycling and recovery technologies for sewage sludge of various composition in agricultural systems, which will help to protect the environment against pollution and rational use of land.

Author Biographies

O. V. Zorina, SI "Institute of Public Health. OM Marzeeva NAMSU », Kyiv, Ukraine

Doctor in biology

Y. O. Mavrykin, Institute of Water Problems and Land Reclamation of NAAS, Kyiv

Ph. D. student

References

1. Egina Malaj, Peter C von der Ohe , Matthias Grote, Ralph Kühne, Cédric P Mondy, Philippe Usseglio-Polatera, Werner Brack, & Ralf B Schäfer. (2014). Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. PNAS, 111(26), 9549-9554.
2. Carlo, Fezzi, Amii R. Harwood, Andrew A. Lovett, & Ian J. Bateman. (2015). The environmental impact of climate change adaptation on land use and water quality. Nature Climate Change. Retrieved from https://www.sciencedaily.com/releases/2015/03/150320091319.htm.
3. Pichura, V. I., Shakhman, I. O., & Bistriantseva, A. M. (2018). Prostorovo-chasova zakonomirnist formuvania iakosti vody v pichtsi Dnipro [Spatial-temporal regularity of water quality formation in the Dnieper river]. Bioresursy ta prirodokorystuvania [Bioresources and nature management], 1-2, 44-57 [in Ukrainian].
4. Bardov, V. G., Fedorenko, V. I., Biletskaia, E. M., Vitrizhchak, S. V., Vlasyk, L. I., & Garkavyi, S. V. etal. (2013). Osnovy ekologii [Principles of Ecology]. Vinnytsia: New Book, 424. [in Ukrainian].
5. Zorina, O. V. (2018). Naukove obgruntuvanie mozhlivosti vykoristania Dniprovskogo vodoshovishcha v iakosti dgerela pytnogo vodopostachania PAT «Zaporoshchstal» u suchasnykh umovakh [Scientific substantiation of the possibility of using the Dnieper reservoir as a source of drinking water supply of PJSC "Zaporizhstal" in modern conditions]. Bioresursy ta prirodokorystuvania [Bioresources and nature management], 10, 1-2, 64-72. [in Ukrainian].
6. Shih-Wei Huang, Bing-Mu Hsu, Yen-Jui Su, Dar-Der Ji, Wei-Chen Lin, Jyh-Larng Chen etal. (2012). Occurrence of diarrheagenic Escherichia coli genes in raw water of water treatment plants. Environmental Science and Pollution Research, 19, 2776-2783.
7. Liu, J. L., Li X.Y., Xie Y. F., & Tang H. (2014). Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply. Science of The Total Environment, 472, 818-824.
8. El-Shehawy, R., Gorokhova E., Fernández-Pizas F., F. F. del Campo. (2012). Global warming and hepatotoxin production by cyanobacteria: What can we learn from experiments? Water Research, 46 (5), 1420-1429.
9. Mosiychuk, Ia. B., Khoruzhchiy P. D., & Nedashkovskiy I. P. (2020). Udoskonalenia tekhnologiy zamknutogo vodopostachania na pidpryemstvakh agropromyslovogo konpleksu [Improvement of technologies of closed water supply at the enterprises of agro-industrial complex]. Melioratsia I vodne gospodarstvo [Land reclamation and water management], 2020, 2, 146-153 [in Ukrainian].
10. Cristina Elena, & Roca Daniela. (2012). Theoretical aspects of advanced methods of wastewater treatment in order to eliminate pollutants from surface waters. Agronomy Series of Scientific Research, 55(2), 33-37.
11. Qu X, Zhao Y, Yu R, Li Y, Falzone C, Smith G, & Ikehata K. (2016). Health effects associated with wastewater treatment, reuse, and disposal. Water Environ Res, 88(10), 1823-1855.
12. Choudri, B. S., Charabi, Y, & Ahmed, M. (2018). Health effects associated with wastewater treatment.Water Environ Res, 90 (10), 1759-1776.
13. Muñoz-Paredes, J. F., & Ramos-Ramos, M. (2014). Reactores discontinuos secuenciales: Una tecnología versátil en el tratamiento de aguas residuals. Ciencia e Ingeniería Neogranadina, 24 (1), 49-66.
14. Eriksson, E., Christensen, N., Schmidt, J. E., & Ledin, A. (2008). Potential priority pollutants in sewage sludge. Desalination, 226, 371-388.
15. Frąc, M., Oszust, K., Lipiec, J., Jezierska-Tys, S., & Nwaichi, E. O. (2014). Soil microbial functional and fungal diversity as influenced by municipal sewage sludge accumulation. Int. J. Environ. Res. Public Health, 11, 8891-8908.
16. Fijalkowski, K., Rorat, A., Grobelak, A., & Kacprzak, M. J. (2017). The presence of contaminations in sewage sludge—the current situation. J. Environ. Manag, 203, 1126-1136.
17. Huang, K., Mao, Y., Zhao, F., Zhang, X.-X., Ju, F., Ye, L., Wang, Y., Li, B., Ren, H., & Zhang, T. (2018). Free-living bacteria and potential bacterial pathogens in sewage treatment plants. Appl. Microbiol. Biotechnol, 102, 2455-2464.
18. Boyko, I. (2020). Modernizatsia biologichnoy ochistki stichnykh vod na Chornomorskvodokanali [Modernization of biological wastewater treatment at Chernomorskvodokanal]. Vodopostachannia. Vodovidvedennia [Water supply. Drainage], 4, 56-57. [in Ukrainian].
19. Kulakivskiy, S. V., & Khoruzhchiy, P. D. (2014). Udoskanaltnia tekhnologiy ochishchenia gospodarsko-pobutovykh stichnykh vod u lokalnykh systrmakh silskogospodarskoy kanalizatsii [Improving the technology of domestic wastewater treatment in local agricultural sewerage systems]. Melioratsia I vodne gospodarstvo [Land reclamation and water management], 2014, 101, 88-97.
20. Ivanova, I. M., Koteychuk, A. L., Semaka, O. M., & Krupko, V. A. (2015). Rozroblenia rekomendatsiy zhchodo zberezhenia zemel zavdiaki utilizatsii vmistu mulovykh kart [Development of recommendations for land conservation through disposal of silt maps]. Tekhnichni nauki ta tekhnologii [Technical sciences and technologies], 1, 191-199. Retrieved from http://nbuv.gota tekhnologii v.ua/UJRN/tnt_2015_1_32. [in Ukrainian].
21. Andrey Mikhailovich Dregulo, & Nikolai Gennadievich Bobylev. (2021). Integrated Assessment of Groundwater Pollution from the Landfill of Sewage Sludge. J. Ecol. Eng., 22(1), 68-75. Retrieved from: https://doi.org/10.12911/22998993/128872.
22. Gorokh, N. P. (2005). Ekologicheskaia otsenka vrednykh vezhestv pri kompleksnoy utilizansii munitsipalnykh otkhodov [Ecological assessment of harmful substances in the complex utilization of municipal waste]. Komunalnoe khoziaysnvj gorodov [Municipal utilities], 63, 171-181. [in Russian].
23. Babaev, V. M., Panov, V. V., Khaylo, Ia. M., Volkov, V. M., Gorokh, M. P. (2018). Alternativni tekhnologichni rishenia problem povnoi utylizatsii mulovogo osady stichnykh vod [Alternative technological solutions to the problem of complete utilization of sludge sludge]. Komunalne gospodarstvo mist [Municipal utilities], 144, 32-42. [in Ukrainian].
24. Karp, I. M., Pianykh, K. E., & Nikitin, E. E. (2017). Problema utilizatsii ta zneshkodzhenia mulovykh osadiv miskikh stichnykh vod ta shliahi ii vyrishenia (ogliad) [The problem of utilization and disposal of sludge in urban wastewater and ways to solve it (review)]. Energotekhnologii i resursosberezhenia [Energy technologies and resource saving], 2, 35-48 [in Ukrainian].
25. Shamanskiy, S. I. (2019). Naukovo-tekhnologichni zasady udoskonalenia ekologichno bezpechnykh protsesiv vodovidvedenia [Scientific and technological principles of improving environmentally friendly drainage processes]: dissertation doctor of technical sciences 21. 06. 01 «ecological safety». National Aviation University. Kiyv, 401. Retrieved from https://nau.edu.ua/site/variables/news/2019/5/disertation%20Shamanskii.pdf. [in Ukrainian].
26. Maleev, V. O., Bezpalchenko, V. M., & Semenchenko, O. O. (2020). Stichni vody m. Khersona iak regionalna ekologichna problema [Sewage of Kherson as a regional ecological problem]. European integration of environmental policy of Ukraine : mat. scientific-practical conf., Odessa, 2020, 153-155. [in Ukrainian].
27. Getmanenko, V. A., & Skrylnik, E. V. (2017). [Scientific-organizational and normative-legal aspects of municipal sewage sludge utilization (on the example of European experience)]. Visnyk agrarnoy nauky [Visnyk agrarnoi nauki], 43-49. Retrieved from https://agrovisnyk.com/pdf/ua_2017_02_08.pdf.
28. Suleiman, H., Rorat, A., Grobelak, A., Grosser, A., Milczarek, M., Płytycz, B., Kacprzak, M., & Vandenbulcke, F. (2017). Determination of the performance of vermicomposting process applied to sewage sludge by monitoring of the compost quality and immune responses in three earthworm species: Eisenia fetida, Eisenia andrei and Dendrobaena veneta. Bioresour. Technol., 241, 103-112.
29. Malińska, K., Golańska, M., Caceres, R., Rorat, A., Weisser, P., & Ślęzak, E. (2017). Biochar amendment for integrated composting and vermicomposting of sewage sludge- the effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresour. Technol., 225, 206-214.
30. Kończak, M., & Oleszczuk, P. (2018). Application of biochar to sewage sludge reduces toxicity and improve organisms growth in sewage sludge-amended soil in long term field experiment. Sci. Total Environ., 625, 8-15.
31. Frišták, V., & Soja, G. (2015). Effect of wood-based biochar and sewage sludge amendments for soil phosphorus availability. Nova Biotechnologica et Chimica, 14, 104.
32. Shamanskiy, S. I., & Boychenko, S. V. (2018). Inovatsiyni ekologichno bezpechni tekhnologii u vodovidvedenni [Innovative environmentally friendly technologies in drainage] : monograph. Kyiv: Center for Educational Literature, 320 [in Ukrainian].
33. Aypetian, T. S. (2014). Konspekt lektsiy z disnsiplin “Ochistka pobutovykh stichnykh vod” ta “Sporudy ta oblsdnania vodovidvedenia” [Synopsis of lectures on the disciplines "Domestic wastewater treatment" and "Sewerage facilities and equipment"]. Kharkiv: KHNUMG, 2014, 121 [in Ukrainian].
34. Kopilevich, A. V., Galimova, V. M., & Lavrik, R. V. (2015). Spetspraktikum. Stichni vody, ochizhshenia ta utylizatsia I zneshkodzhenia osadiv [Special workshop. Wastewater, treatment and disposal and disposal of sludge]. Kiyv: NUBPK, 136. [in Ukrainian].
35. Sogn, T. A., Dragicevic, I., Linjordet, R., Krogstad, T., Eijsink, V. G. H., & Eich-Greatorex, S. (2018). Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. Int. J. Recycl. Org. Waste Agric., 7, 49-58.
36. Happy City - How to Plan and Create the Best Livable Area for the People / R. Tomanek : edited by A. Brdulak, H. Brdulak. Springer International Publishing, 2017. 273 r.
37. Zhukova, V. S. (2013). Ochizhchenia stichnykh vod vid spoluk azotu z vykoristaniam imobilizovanykh mikroorganizmiv [Wastewater treatment from nitrogen compounds using immobilized microorganisms]. Abstract of the dissertation of the candidate of technical sciences: 05.17.21 "Technology of water purification". Nat. tech. University of Ukraine "KPI". Kiyv, 19. [in Ukrainian].
38. Korinko, I. V., Piligram, S. S., Lessik, M. D., & Smirnova, G. M. (2010). Dosvid roboty KP KG “Kharkivkomunochistvod” zhodo utylizatsii osadiv stichnykh vod z vykoristanniam tekhnologii italiysksy firm VOMMTAGEOTECK [Experience of KP KG "Kharkivkomunochistvod" on the disposal of sewage sludge using the technology of Italian companies VOMMTAGEOTECK]. Vodopostachania ta vodovidvedenia [Water supply and sewerage], 5, 28-29. [in Ukrainian].
39. Samolada, M., & Zabaniotou, A. (2014). Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manag., 34, 411-420.
40. Kapranov, S. V., & Shupika, V. M. (2010). Pochva, otkhody I zdorovye cheloveka [Soil, waste and human health]. Lugansk: Amber, 488. [in Russian].
41. JinZhang, JunweiJin, MinyanWang, Ravi Naidu, Yanju Liu, Yu Bon Man, Xinqiang Liang, Ming Hung Wong, Peter Christine, Yan Zhang, Chengfang Song, & Shengdao Shan. (2020). Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility. Environmental Research., 2020, 191, 118792. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0013935120309312?via%3Dihub.
42. Krupko, V. A. (2012). Analiz mozhlyvostey utilizatsii osadu ochisnykh sporud [Analysis of sewage sludge utilization possibilities]. Visnyk Chernigivskogo derzhavnogo tekhnichnogo universitetu [Visnyk of Chernihiv State Technical University]. Retrieved from https://ts-vistnic.stu.cn.ua/index.pl?task=arcls&id=1315. [in Ukrainian].
43. Garrido-Baserba, M., Molinos-Senante, M., Abelleira-Pereira, J. M., Fdez-Güelfo, L. A., Poch, M., & Hernández-Sancho, F. (2015). Selecting sewage sludge treatment alternatives in modern wastewater treatment plants using environmental decision support systems. J. Clean. Prod.,107, 410-419.
44. Kasina, M., Wendorff-Belon, M., Rafał Kowalski, P., & Michalik, M. (2019). Characterization of Incineration Residues from Wastewater Treatment Plant in Polish City: a Future Waste Based Source of Valuable Elements? Journal of Material Cycles and Waste Management., 21(4), 885-896. doi: 10.1007/s10163-019-00845-1.
45. Vamvuka, D., Alexandrakis, S., & Galetakis, M. (2019). Combustion Performance of Sludge From a Wastewater Treatment Plant in Fluidized Bed. Factorial Modeling and Optimization of Emissions. Front. Energy Res., 7. doi: 10.3389/fenrg.2019.00043.
46. Zlatkovskyi, O., Shevchenko, A., & Shevchenko, T. (2019). Use of Fly Ash for Conditioning Excess Activated Sludge During Dewatering on Chamber Membrane Filter Presses. Eastern-European Journal of Enterprise Technologies, 3/10(99), 17-23.
47. Martínez, F., Cuevas, G., Calvo, R., & Walter, I. (2003). Biowaste effects on soil and native plants in a semiarid ecosystem. Journal of Environmental Quality, 32, 472-479. Retrieved from https://doi.org/10.2134/ jeq2003.4720.
48. Sort, X., & Alcañiz, J. M. (1999). Effects of sewage sludge amendment on soil aggregation. Land Degradation and Development, 10(3), 3-12. Retrieved from https://doi.org/10.1002/(SICI)1099- 145X(199901/02)10:13.0.CO;2-0.
49. Singh, R. P., & Agrawal, M. (2009). Use of sewage sludge as fertiliser supplement for Abelmoschus esculentus plants: Physiological, biochemical and growth responses. International Journal of Environment and Waste Management, 3, 1/2, 91-106.
50. Wu, C., Li, W., Wang, K. & Li, Y. (2015). Usage of pumice as bulking agent in sewage sludge composting. Bioresource Technology, 190, 516-521. Retrieved from: https://doi.org/10.1016/j.biortech.2015.03.104.
51. Kominko, H., Gorazda, K. & Wzorek, Z. (2017). The possibility of organo-mineral fertilizer production from sewage sludge. Waste and Biomass Valorization, 8(5), 1781-1791. Retrieved from https://doi. org/10.1007/s12649-016-9805-9.
52. Zahra Zerrouqi, Mohammed Reda Tazi, Abdelhafid Chafi, & Abdessamad Zerrouqi. (2020). Impact of Sewage Sludge Leaching on Soil Constituents and Quality. Environmental Research, Engineering and Management, 76(4), 87-96.
53. Dyshpliuk, V. E. (2016). Mikrobiologichna kharakteristika osadiv stichnykh vod miskykh ochisnykh sporud ta otsinka ikh ekologichnoi prudatnosti dlia vykorystania v zemlerobstvi [Microbiological characteristics of sewage sludge from urban treatment plants and assessment of their environmental suitability for use in agriculture]. Silskogospodarska mikrobiologia [Agricultural microbiology], 23. 10-16. Retrieved from: https://doi.org/10.35868/1997-3004.23.10-16. [in Ukrainian].
54. Dyshpliuk, V. E., & Garkavyi, S. I. (2020). Ekologo-gigienichni aspekty zastosuvania osadiv stichnykh vod velykykh mist I promuslovykh tsentriv Ukrainy iak netradytsiynykh organichnykh dobryv u zemlerobsnvi [Ecological and hygienic aspects of sewage sludge use in large cities and industrial centers of Ukraine as non-traditional organic fertilizers in agriculture]. Silskogospodarska mikrobiologia [Agricultural Microbiology], 31, 3-15. [in Ukrainian].
55. Colangelo, F., Cioffi, R., Montagnaro, E., & Santoro, L. (2012). Soluble salt renoval from MSVI fly ash and its stabilization for safer disposal and recovery as road basement material. Waste Management, 32 (6), 1179-1185. DOI: 10.1016/j.wasman.2011.12.013.
56. Cusido, J. A., & Cremades, L. V. (2012). Environmental effects of using clau bricks produced with sewage, Leach ability and toxicity studies. Waste Management, 32 (6), 1202-1208.
57. Argunov, N. D., Abramov, I. A. K., Salomatina, N. A., Vesiolov, V. M., Zalevskiy V. M., & Miorzlaia G. E. (2012). Sredstvo povyshenia plodorodia pochv na osnove osadka stochnkh vod [Means of increasing soil fertility based on sewage sludge]. Vestnik FGOU VPO MGAU [Vestnik FGOU VPO MGAU], 2, 83-86. [in Russian].
58. Rojas-Flores, S., De La Cruz-Noriega M., Cabanillas-Chirinos L. et al. (2020). Using Lime (Citrus × aurantiifolia), Orange (Citrus × sinensis), and Tangerine (Citrus reticulata) Waste as a Substrate for Generating Bioelectricity. Environmental Research, Engineering and Management, 75, 3, 24-34.
59. Agnieszka Rorat, Pauline Courtois, Franck Vandenbulcke, & Sébastien Lemiere. (2019). Sanitary and environmental aspects of sewage sludge management. Industrial and Municipal Sludge., 155-180.
60. Lamastra, L., Suciu, N. A., & Trevisan, M. (2018). Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer. Chem. Biol. Technol. Retrieved from https://doi.org/10.1186/s40538-018-0122-3.
61. Jaffar Abdul Khaliq S, Ahmed, M., Al-Wardy, M., Al-Busaidi, A., & Choudri, B. S. (2017). Wastewater and sludge management and research in Oman: an overview. J Air Waste Manag. Assoc., 67(3), 267-278.
62. Zahra Aghalari, Hans-Uwe Dahms, Mika Sillanpää, Juan Eduardo Sosa-Hernandez, & Roberto Parra-Saldívar. (2020). Effectiveness of wastewater treatment systems in removing microbial agents: a systematic review. Global Health, 16, 13. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6998187/.
63. Pliatsuk L. D., & Chernysh E. Iu. (2013). Matematichne modeliuvania protsesu zneshkodzhchenia osadu stichnykh vod v bioculfidogennykh umovakh [Mathematical modeling of the process of sewage sludge disposal in biosulfidogenic conditions]. Visnyk NTU “KHPI” [Bulletin of NTU "KhPI"], 37, 148-160. [in Ukrainian].
64. Bhaskar Bethi, Shirish H. Sonawane, Bhanvase A. Bhanvase, Sarahg P. Gumfekar. (2016). NanomaterialsBased Advanced Oxidation Processes for Wastewater Treatment: Retrieved from. Chemical Engineering and Processing – Process Intensification, 109, 178-189. doi: 10.1016/j.cep.2016.08.016.
65. Covinich, L. G., Bengoechea, D. I., Fenoglio, R. J., & Area, M. C. (2014). Advanced Oxidation Processes for Wastewater Treatment in the Pulp and Paper Industry: A Review. American Journal of Environmental Engineering, 4(3), 56-70. doi:10.5923/j.ajee.20140403.03.
66. Krishnan, S., Rawindran, H., Sinnathambi, C. M., & Lim, J. W. (2017). Comparison of Various Advanced Oxidation Processes Used in Remediation of Industrial Wastewater Laden with Recalcitrant Pollutants. 29th Symposium of Malaysian Chemical Engineers : Materials Science and Engineering, 206. Retrieved from: https://www.researchgate.net/publication/317798272_Comparison_of_various_advanced_oxidation_processes_used_in_remediation_of_industrial_wastewater_laden_with_recalcitrant_pollutants. doi:10.1088/1757-899X/206/1/012089.
67. Anna Grobelak, Anna Grosser, Małgorzata Kacprzak, & Tomasz Kamizela. (2019). Sewage sludge processing and management in small and medium-sized municipal wastewater treatment plant-new technical solution. Journal of Environmental Management, 90-96.
68. Puyol D., Batstone D.J., Hülsen T., Astals S., Peces M., & Krömer J.O. (2016). Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects. Front. Microbiol., 7, 2106.
69. Shidko O. M., Tymchuk I. S., & Maliovanyi M. S. (2019). [Adaptation of the world experience of sewage sludge utilization to ecological conditions of Ukraine]. Naukoviy vidnyk NLTU Ukraini [Scientific Bulletin of NLTU of Ukraine], 29, 2. Retrieved from: https://www.researchgate.net/publication/332884102_Adaptacia_svitovogo_dosvidu_utilizacii_osadi v_sticnih_vod_do_ekologicnih_umov_Ukraini. [in Ukrainian].
70. Sviridova V. A., & Medvedeva O. V. (2013). Osnovni problem utilizatsii osadiv stichnykh vod [The main problems of sewage sludge disposal]. Naukovi zapisky [Scientific notes], 14, 101-105. [in Ukrainian].
Published
2021-12-23
How to Cite
Zorina, O., & Mavrykin, Y. (2021). Modern approaches to treatment and recovery of secondary sludge of domestic sewage. Land Reclamation and Water Management, (2), 55 - 68. https://doi.org/10.31073/mivg202102-301