ASSESSMENT OF NATURAL MOISTURE CONDITIONS ON THE EXAMPLE OF THE SOUTHWESTERN PART OF KYIV REGION
Abstract
The sustainability of agriculture in Ukraine directly depends on the level of natural soil moisture supply, which is significantly deteriorating under the influence of climate change. The article investigates the impact of these changes on the value of potential evapotranspiration (ETo) in the southwestern part of the Kyiv region (Central Forest-Steppe of Ukraine) based on the data from the Bila Tserkva weather station for the period from 1991 to 2020. The research methodology is based on the assumption that the assessment of the impact of climate change on the state of natural moisture supply can be performed provided that climate change itself is assessed according to the long-term dynamics of air temperature and precipitation in the period from 1991 to 2021 with the values of the same indicators in the period from 1961 to 1990 - the climatic norm. The potential evapotranspiration (ETo) was chosen as the criteria for assessing the impact of climate change on the state of soil moisture supply. The assessment results showed that the annual value of potential ETo increased by 9%, which may indirectly indicate a deterioration in the conditions of natural soil moisture supply. This has important implications for agriculture, as an increase in ET can lead to a decrease in available moisture for plants, which will negatively affect crop yields. The study covers changes in average annual and average monthly air temperature, as well as precipitation by season and month. It has been established that over the past thirty years, Ukraine has been experiencing a deterioration in moisture conditions, which requires the adaptation of agricultural practices. Sustainable development of the agricultural sector is possible only if changes in the natural moisture supply are taken into account when developing management models and cultivation technologies. The results obtained indicate the need to introduce innovative agronomic technologies that adapt to current climate change.
References
2. Romashchenko, M. I., Kovalchuk, V. P., Tarariko, Yu. O., Soroka, Yu. V., Krucheniuk, A. V., & Demchuk, O. S. (2016). Systema informatsiinoho zabezpechennia ahrarnoho vyrobnytstva cherez merezhu internet. [Information support system for agricultural production via the Internet]. Melioratsiia i vodne hospodarstvo, 104, 87-92. [In Ukrainian]
3. Tarariko, Yu. O., Saidak, R. V., & Soroka, Yu. V. (2019). Pidsumky ta perspektyvy doslidzhen z otsinky ta ratsionalnoho vykorystannia ahroresursnoho potentsialu silskohospodarskykh terytorii. [Results and Prospects of Research on the Assessment and Rational Use of Agricultural Resource Potential of Agricultural Areas]. Melioratsiia i vodne hospodarstvo, 2, 186-198. [In Ukrainian].
4. Holoborodko, S. P., & Dymov, O. M. (2019). Globalna zmina klimatu: prychyny vynyknennia ta naslidky dlia silskohospodarskoho vyrobnytstva Pivdennoho Stepu. [Global climate change: causes and consequences for agricultural production in the Southern Steppe]. Melioratsiia i vodne hospodarstvo, 1, 88-98. [In Ukrainian].
5. Kovalchuk, T. (2022). Zmina klimatu ta silske hospodarstvo: iak adaptuvatysia. [Climate Change and Agriculture: How to Adapt]. Retrieved from: https://agro-business.com.ua/agro/idei-trendy/item/24771-zmina-klimatu-ta-silske-hospodarstvo-iak-adaptuvatysia.html [ in Ukrainian ]
6. Ivaniuta, S.P., Kolomiiets, O.O., Malynovska, O.A., & Yakushenko, L.M. (2020). Zmina klimatu: naslidky ta zakhody adaptatsii. [Climate changes and adaptation measures]: analit. dopovid. Kyiv: NISD. [in Ukrainian].
7. Derek, J. (2021). The utility of climatic water balance for ecological inference depends on vegetation physiology assumptions. Global Ecology and Biogeography. March 18, 2021. DOI: 10.1111/ geb.13277
8. Geoportal der BfG. Mean Annual Climatic Water Balance. Retrieved from: https://geoportal.bafg.de/ dokumente/had/214ClimaticWaterBalance.pdf
9. Garcia, R., & Nguyen, T. (2019). Assessment of Hydrological Changes in Agricultural Areas under Climate Change Scenarios. Journal of Hydrology, 573, 608-620.
10. Bando, G., & Prăvălie, R. (2015). Climatic water balance dynamics over the last five decades in Romania's most arid region. Journal of Geographical Sciences, 25 (11). DOI: 10.1007/ s11442-015-1236-1
11. Romashchenko, M., Saidak, R., Matyash, T. & Yatsiuk, M. (2021). Irrigation efficiency depending on water cost. Land Reclamation and Water Management, 2, 150-159. DOI: 10.31073/ mivg202102-308
12. Yatsiuk, M.V., Adamenko, T.I., Romashchenko, M.I., Tsvietkova, H.M., Kolmaz, Yu.T., Kulbida, M.I., & Prokopenko, A.L. (2021). Kontseptualni osnovy upravlinnia posukhamy v Ukraini - [Conceptual basis of drought management in Ukraine]. Kyiv: FOP Yamchynskyi O.V. [in Ukrainian].
13. Romashchenko, M.I., Saydak, R.V., & Matyash, T.V. (2019). Development of irrigation and drainage as the basis of sustainable agriculture in Ukraine in climate change. Modern problems of water management, environmental protection, architecture and construction: materials of the IX International scientific and technical conference (July 22-27, Georgia). P. 243-250.
14. Romashchenko, M.I., Baliuk, S.A., Verhunov, V.A., Vozhehova, R.A., Zhovtonoh, O.I., Rokochynskyi, A.M. Tarariko, Yu.O., & Truskavetskyi, R.S. (2020). Stalyi rozvytok melioratsii zemel v Ukraini v umovakh zmin klimatu. Agrarian innovations, 3, 56-64. DOI: 10.32848/agrar. innov.2020.3.10
15. Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrig. Drain. Paper No. 56, Rome: FAO. Retrieved from: http://www.fao.org/3/x0490e/x0490e00.htm
16. Cherlinka, V. (2024). Evapotranspiration Process and Methods of Measurement. Retrieved from: https://eos.com/uk/blog/evapotranspiratsiia/.
17. Giménez, L., Petillo, M.G., Paredes, P., & Pereira, L.S. (2016). Predicting Maize Transpiration, Water Use and Productivity for Developing Improved Supplemental Irrigation Schedules in Western Uruguay to Cope with Climate Variability. Water, 8, 309. DOI: https://doi.org/10.3390/w8070309
18. Lopez-Urrea, R., Santa, O.F., Fabeiro, C., & Moratalla, A. (2006). Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agricultural Water Management, 85, 15-26. DOI: https://doi.org/10.1016/j.agwat.2006.03.014
19. Trajkovic, S., & Kolakovic, S. (2009). Evaluation of Reference Evapotranspiration Equations Under Humid Conditions. Water Resource Manage, 23, 3057. DOI: https://doi.org/10.1007/s11269-009-9423-4
20. Djaman, K., Balde, A.B., Sow, A., Muller, A.B., Irmak, S., N'Diaye, M.K. Manneh B., Moukoumbi Y.D., Futakuchi K., & Saito K. (2015). Evaluation of sixteen reference evapotranspiration methods under Sahelian conditions in the Senegal River Valley. J. Hydrol. Reg. Stud, 3, 139-159. DOI: https://doi.org/10.1016/j.ejrh.2015.02.002
21. Romashchenko, M., Shatkowski, A., & Zhuravlev. O. (2016). Features of application of the "Penman - Monteith" method for conditions of a drip irrigation of the Steppe of Ukraine (on example of grain corn). Journal of Water and Land Development, 31, 123-127 DOI: https://doi.org/10.1515/jwld-2016-0043
22. Djaman, K., O'Neill, M., Owen, C.K., Smeal, D., Koudahe, K., West, M., Allen S., Lombard, K., & Irmak, S. (2018). Crop Evapotranspiration, Irrigation Water Requirement and Water Productivity of Maize from Meteorological Data under Semiarid Climate. Water, 10, 405. DOI: https://doi.org/10.3390/w10040405